

    
      
          
            
  


Warning

The eemeter package is under rapid development; we are working quickly
toward a stable release. In the mean time, please proceed to use the package,
but as you do so, recognize that the API is in flux and the docs might not
be up-to-date. Feel free to contribute changes or open issues on
github [https://github.com/openeemeter/eemeter] to report bugs, request
features, or make suggestions.




The Open Energy Efficiency Meter

This package holds the core methods used by the of the Open Energy
Efficiency energy efficiency metering stack. Specifically, the eemeter
package abstracts the process of building and evaluating models of energy
consumption or generation and of using those to evaluate the effect of energy
efficiency interventions at a particular site associated with a particular
project.

The eemeter package is only one part of the larger Open Energy Efficiency
technology stack. Briefly, the architecture of the stack is as follows:



	eemeter: Given project and energy data, the eemeter package is
responsible for creating models of energy usage under different project
conditions, and for using those models to evaluate energy efficiency
projects.

	datastore: The datastore application is responsible for validating and
storing project data and associated energy data, for using the eemeter to
evaluate the effectiveness of these projects using the data it stores, and
for storing and serving those results. It exposes as REST API for
handling these functions.

	etl: The etl package provides tooling which helps to extract data from
various formats, transform that data into the format accepted by datastore,
and load that transformed data into the appropriate datastore instance.
ETL stands for Extract, Transform, Load.







Usage



	Guides
	Introduction
	Core use cases

	Other potential use cases

	Data requirements
	Project data

	Trace data





	Loading data

	External analysis





	Background
	1) Meters and Smart Meters - where does energy data come from?

	2) Measuring Energy Savings and the Transition to Demand Side Management

	3) How the OpenEEmeter is valuable: Baselining, Normalization, and Modeling Energy Use





	Architecture Overview

	Methods Overview
	Modeling periods

	Trace modeling

	Weather normalization

	Savings
	Annualized weather normal

	Gross predicted

	Gross observed





	Aggregation rules
	Inclusion criteria





	Error propagation

	Weather data matching





	Modeling Overview
	Basic modeling principles
	Model error

	Data sufficiency





	Types of models
	Weekday and Seasonal effects regression model

	Hidden markov model









	Glossary

	Why open source?





	eemeter
	Installation

	Topics
	Basic Usage: eemeter package

	Running a meter

	Data preparation

	Inspecting results

	Weather Data Caching





	API
	eemeter.ee
	eemeter.ee.meter





	eemeter.io
	eemeter.io.serializers

	eemeter.io.parsers





	eemeter.modeling
	eemeter.modeling.formatters

	eemeter.modeling.models





	eemeter.processors
	eemeter.processors.dispatchers

	eemeter.processors.interventions

	eemeter.processors.location





	eemeter.structures

	eemeter.weather
	GSODWeatherSource

	ISDWeatherSource

	TMY3WeatherSource

	Location









	Development
	Testing

	Building Documentation









	datastore
	Development Setup
	Clone the repo and change directories

	Install required python packages

	Define the necessary environment variables

	Run database migrations

	Seed the database

	Start a development server





	Topics
	Basic Usage: datastore application

	Setup

	Using the API to get loaded data

	Running meters

	Scheduling a single meter run

	Customizing meter runs

	Bulk-triggering meter runs
	Through the API

	Through a management command





	Meter result warehouse tables
	Using the warehouse_meterresultmart table





	Aggregations and groups
	Additional filter examples:





	Group statistics warehouse tables

	PostgreSQL tables
	Core project and trace data (i.e., data loaded through ETL)

	Meter run and meter result data

	Metering tables

	Warehouse tables





	Management commands
	dev_seed

	prod_seed

	trace_record_indexes

	run_meters

	meter_progress

	delete_meters

	run_aggregations

	meterresultmart

	modelresultmart

	projectsummarymart

	tracesummarymart

	geoinfo









	API





	ETL Toolkit
	Installation

	API












References


	PRISM [http://www.marean.mycpanel.princeton.edu/~marean/images/prism_intro.pdf]

	ANSI/BPI-2400-S-2012 [http://www.bpi.org/Web%20Download/BPI%20Standards/BPI-2400-S-2012_Standard_Practice_for_Standardized_Qualification_of_Whole-House%20Energy%20Savings_9-28-12_sg.pdf]

	NREL’s Uniform Methods [http://energy.gov/sites/prod/files/2013/11/f5/53827-8.pdf]






License

MIT [https://opensource.org/licenses/MIT]







          

      

      

    

  

    
      
          
            
  


Guides



	Introduction
	Core use cases

	Other potential use cases

	Data requirements

	Loading data

	External analysis











	Background
	1) Meters and Smart Meters - where does energy data come from?

	2) Measuring Energy Savings and the Transition to Demand Side Management

	3) How the OpenEEmeter is valuable: Baselining, Normalization, and Modeling Energy Use











	Architecture Overview







	Methods Overview
	Modeling periods

	Trace modeling

	Weather normalization

	Savings

	Aggregation rules

	Error propagation

	Weather data matching











	Modeling Overview
	Basic modeling principles

	Types of models











	Glossary







	Why open source?









          

      

      

    

  

    
      
          
            
  


Introduction

The OpenEEmeter is an open source software package that uses metered energy
data to manage aggregate demand capacity across a portfolio of retail
customer accounts. The software package consists of three main parts:


	an Extract-Transform-Load (ETL) toolkit for processing project,
energy, and building data
(https://github.com/openeemeter/etl/);

	a core calculation library (this package) that implements standardized
methods (https://github.com/openeemeter/eemeter/); and

	a datastore application for storing post-ETL inputs and computed outputs
(https://github.com/openeemeter/datastore/).



More information about this architecture can be found in
Architecture Overview.


Core use cases

The OpenEEmeter has been designed specifically to provide weather-normalized
energy savings measurements for a portfolio of projects using monthly billing
data or interval smart meter data. The main outputs for this core use case
are project and portfolio-level are:


	Gross Energy Savings

	Annualized Energy Savings

	Realization Rate (when savings predictions are available)



More information about these methods can be found in
Methods Overview.




Other potential use cases

The OpenEEmeter can also be configured to manage energy resources across a
portfolio of buildings, including potentially:


	Analytics of raw energy data

	Portfolio management

	Demand side resource management






Data requirements

The EEmeter requires a combination of trace data, project data, and
weather data to calculate weather-normalized savings. At its most rudimentary,
the EEmeter requires a trace of consumption data
along with project data indicating the completion date and location of the
project.

The completion of a project demarcates the shift
between a baseline modeling period and a
reporting modeling period. For more
information on this, see Methods Overview.

The EEmeter is configured to manage project and
trace data. Trace data can be electricity, natural gas,
or solar photovoltaic data of any frequency - from monthly billing data to
high-frequency sensor data (see 1) Meters and Smart Meters - where does energy data come from?).

Where project and trace data originate from different database sources, a
common key must be available to link projects with their respective traces.


Project data

Project data is typically a set of attributes that can be used for advanced
savings analytics, but at minimum must contain a date to demarcate start and
end of intervention periods.

Each project must have, at minimum:


	a unique project id

	start and end dates of known interventions

	a ZIP code (for gathering associated weather data)

	a set of associated traces



Other data can also be associated with projects, including (but not limited
to):


	savings predictions

	square footage

	cost






Trace data

Each trace must have, at minimum,


	a link to a project id

	a unique id of its own

	an interpretation

	a set of records



Each record within a trace must have:


	a time period (start and end dates)

	a value and assiciated units of

	a boolean “estimated” flag



The EEmeter will reject traces not meeting built-in data sufficiency requirements.






Loading data

The eemeter python package is a calculation engine which is not
desigend for data storage. Instead, project and trace data are stored
in the datastore alongside outputs from the eemeter.

To load data into the datastore, EEMeter comes bundled with an
ETL Toolkit. If you are deploying the open source software, you will
need to write or customize a parser to load your data into the ETL pipeline.
We rely on a python module called luigi [https://luigi.readthedocs.io/]
to manage the bulk importation of data.

More on this architecture.




External analysis

You may decide that you want to use EEmeter results to analyze project data
that does not get parsed and uploaded into the datastore. We have made
it easy to export your EEmeter results through an API or through a web
interface. Other options include a direct database connection to a BI tool
like Tableau or Salesforce.







          

      

      

    

  

    
      
          
            
  


Background


1) Meters and Smart Meters - where does energy data come from?

Energy data is generated by hardware devices that measure electricity and
natural gas flow. A device like this is generally referred to as a
“meter” (though this is distinct from the software-based “EEmeter”
- see Methods Overview). The most common and ubiquitous measuring
device is a utility-owned meter used for determining billing. Some utilities
have upgraded their meters to provide hourly or 15-minute interval
measurements. These so-called “smart meters” use Advanced Metering
Infrastructure (AMI) to transmit data back to utilities for processing in
near-real time. Other devices that generate energy data include sub-meters,
external sensors, and embedded sensors.


Note

The “smart” in smart meter can be a bit of a misnomer. Despite higher
measurement frequency and wireless data transmission, these smart meters
collect essentially the same data that electricity meters did in the 1950s.
Each meter datapoint consists of a timestamp and an incremental value of
consumption. We call this  string of data characterized by paired sets of
timestamps and meter readings a trace. Traces form the basis of the
energy modeling in the EEmeter.



Just like the odometer in your car doesn’t tell you how fast you are
traveling, the meter on your house doesn’t tell you how much energy you have
consumed. Consumption must be calculated. In the past, energy companies simply
determined your rate of consumption by taking monthly meter readings and
calculating the difference. With smart meters, these datapoints can be
captured more frequently and with greater precision, allowing for more
sophisticated forms of billing.




2) Measuring Energy Savings and the Transition to Demand Side Management

The OpenEEmeter replaces traditional approaches to program-related energy
measurement. Utilizing newly available smart meter data, the OpenEEmeter
solves the problem of measuring energy savings and opens new doors for
managing demand side programs.

Historically, energy savings have been
measured in one of three ways. The
first (and least costly) approach is to take laboratory measurements of
different energy-consuming devices (e.g., light bulbs) and calculate the
difference in consumption from one to the next, then estimate the savings over
a given period of time, taking into consideration typical usage patterns. This
first approach is limited by the accuracy and availability of physical models.

The second (and most costly) approach samples consumption data prior to and
following an intervention of some sort (e.g., an energy efficiency retrofit),
and estimates savings after controlling for building-specific factors like
occupancy, temperature, energy intensity, etc. This second approach is limited
by low availability of data describing these building-specific factors (thus
making it very costly).

A third (post-hoc) approach has recently emerged that takes a population-level
sample of similar buildings and compares with a treatment group of buildings
that have received an energy efficiency upgrade (or other intervention). This
approach assumes that all buildings will be affected equally by exogenous
factors, leaving only endogenous factors (i.e., the efficiency upgrade) to
account for the energy consumption difference.

In the analog era of traditional meters and monthly bills, efforts to improve
energy efficiency emphasized fairly static and permanent changes in
consumption. A whole-home retrofit, for example, would reduce energy demand
without requiring any additional behavioral or lifestyle changes. A one-time
intervention would provide years of benefit, and our metering technology at
the time provided a way to measure the performance of these measures.

With the introduction of smart meters, utilities have transitioned from simple
efficiency programs to a suite of programs under the umbrella of demand side
management (DSM). These new measures fall into three broad categories
including time of day, demand, and net metering. The OpenEEmeter expands the
programmatic interface of energy efficiency to engage with emergent
technologies and market based demand side engagement programs.




3) How the OpenEEmeter is valuable: Baselining, Normalization, and Modeling Energy Use

Smart meter data allows for more complexity in statistical models. Rather than
relying on simple regression experiments to normalize energy consumption,
analysts can parse the impact of exogenous and endogenous factors
independently and iteratively. The notion of baseload energy use can even be
disaggregated into multiple demand states. For example, a home will use
very little energy when empty, a bit more when occupied, and a large amount
when appliances and heating or cooling systems are operating. These demand
states can be measured against various sorts of interventions, thus enabling
both traditional energy efficiency savings measurements, but also leveraging
modern load balancing tools.

The OpenEEmeter calculates energy savings in real time by selecting a sample
of consumption data prior to an intervention, weather-normalizing it to
establish a baseline, and calculating the difference between projected energy
usage and actual energy usage following the intervention. This method
maintains the cost-effectiveness of the naive predicted savings approach, the
real-world integrity of the building efficiency approach, without sacrificing
on time as with the post hoc control group approach.







          

      

      

    

  

    
      
          
            
  


Architecture Overview

The complete eemeter architecture consists primarily of a datastore
application (see datastore), which houses energy and project data, and
a data pipeline toolkit (see ETL Toolkit) that helps get data into the
datastore.

These two work in tandem to take raw energy data in whatever form it exists
and compute energy savings using the eemeter package. The methods and models
used within the datastore for computing energy savings are kept in a library
package called eemeter, which can also be used independent of the datastore
application (see eemeter).

Each of these components are open sourced under an MIT License and can be found
on github:



	eemeter [https://github.com/openeemeter/eemeter/]

	datastore [https://github.com/openeemeter/datastore/]

	etl [https://github.com/openeemeter/etl/]






The core calculation engine is separated from the datastore in order to allow
easier development of and evaluation of its methods, but this architecture
also makes it possible to embed the calculation engine or any of its useful
modules (such as the weather module) in other
applications.

The data structures in each - the eemeter and the datastore - mirror each
other. This simplifies data transfer and eases interpretation of results.





          

      

      

    

  

    
      
          
            
  


Methods Overview

The EEmeter provides multiple methods for calculating
energy savings. All of these methods compare
energy demand from a modeled counterfactual
pre-intervention
baseline to post-intervention energy
demand. Some of these methods, including the most conventional,
weather normalize energy demand.

These basic methods [1] rely on a modeled
relationship between weather patterns and energy demand. The particular models
used by the EEmeter are described more precisely in Modeling Overview.


Modeling periods

For any savings calculation, the period of time prior to the start of any
interventions taking place as part of a project
we term the baseline period.
This period is used to establish models of the relationship between
energy demand and a set of factors that
represent or contribute to end use demand (such as
weather, time of day, or day of week) for a particular building prior to an
intervention. The baseline becomes a reference
point from which to make comparisions to post-intervention energy performance.
The baseline period is one of two types of
modeling period frequently occurring in
the EEmeter.

The second half of the savings calculation concerns what happens after an
intervention. Any post-intervention period for which energy savings is
calculated is called a reporting period
because it is the period of time over which energy savings is reported. A
project generally has only one
baseline period, but it might have multiple
reporting periods. These are
the second type of modeling period to
frequent occur in the EEmeter.

The extent of these periods will, in most cases, be determined by the
start and end dates of the interventions in a project. However, in some cases,
the intervention dates are not known, or are ongoing, and must be modeled
because they cannot be stated explicitly. We refer to models which account for
the latter scenario as
structural change models;
these are covered in greater detail in Modeling Overview.

EEmeter structures which capture this logic can be found in the API documentation
for eemeter.structures.


[image: _images/project-timeline-illustration.png]
Pre-intervention baseline period and post-intervention reporting periods
on a project timeline.






Trace modeling

The relationship between energy demand and various external factors can differ
drastically from building to building, and (usually!) changes after an
intervention. Modeling these relationships properly with statistical confidence
is a core strength of the EEmeter.

As noted in the background, we term a set of
energy data points a trace, and a building or project
might be associated with any number of traces. In order to calculate savings
models, each of these traces must be modeled.

Before modeling, traces are segmented into components which overlap each
baseline and reporting period of interest, then are modeled separately. [2]
This creates up to \(n * m\) models for a project with \(n\) traces
and \(m\) modeling periods.

Each of these models attempts to establish the relationship between
energy demand and external factors as it performed during the
particular modeling period of interest. However, since the extent to which a
model successfully describes these relationships varies significantly, these
must be considered only in conjunction with model error and goodness of fit
metrics Modeling Overview. Any estimate of energy demand given by any
model fitted by the EEmeter is associated with variance and confidence bounds.

In practice the number of models fitted for any particular project might be
fewer than \(n * m\) due to missing or insufficient data
(see Data sufficiency). The EEmeter takes these failures into account
and considers them when building summaries of savings.


[image: _images/trace-segmenting-illustration.png]
An example of trace segmenting with two traces,
one baseline period and one reporting period. Trace 1 is segmented
into just one component - the baseline component - because data for the
reporting period is missing. Trace 2 is segmented into one baseline
component and one reporting component. The segments of Trace 1 and
Trace 2 have different lengths, but models of their energy demand
behavior can still be built.






Weather normalization

Once we have created a model, we can apply that model to determine an estimate
of energy demand during arbitrary weather scenarios. The two most common
weather scenarios for which the EEmeter will estimate demand are the
“normal” weather year and the observed
reporting period weather year. This is generally necessary because the data
observed in the baseline and reporting periods occurred during different
time periods with different weather – and valid comparisons between them must
account for this. Estimating energy performance during the “normal” weather
attempts to reduce bias in the savings estimate by accounting for the
peculiarity (as compared to other years or seasons) of the relevant observed
weather.

In an attempt to reduce the number of arbitrary factors influencing results,
we only ever compare model estimates or data over that has occurred over the
same weather scenario and time period. This helps (in the aggregate) to ensure
equivalency of end use demand pre- and post-intervention.




Savings

If the data and models show that
energy demand is reduced relative to
equivalent end use demand
following an intervention, we say that there have been energy savings, or
equivalently, that energy performance has increased.

Energy savings is necessarily a difference; however, this difference must be
taken carefully, given missing data and model error, and is only taken after
the necessary aggregation steps.

The equation for savings is always:


\(S_\text{total} = E_\text{b} - E_\text{r}\)


or


\(S_\text{percent} = \frac{E_\text{b} - E_\text{r}}{E_\text{b}}\)


where



	\(S_\text{total}\) is aggregate total savings

	\(S_\text{percent}\) is aggregate percent savings

	\(E_\text{b}\) is aggregate energy demand as under baseline period conditions

	\(E_\text{r}\) is aggregate energy demand as under reporting period conditions






Depending on the type of energy savings desired, the values \(E_\text{b}\)
and \(E_\text{r}\) may be calculated differently. The following types of
savings are supported:


	Annualized weather normal

	Gross predicted

	Gross observed




Annualized weather normal

The annualized weather normal
estimates savings as it may have occurred during a
“normal” weather year. It does this by
building models of both the baseline and reporting energy demand and using
each to weather-normalize the energy values.


\(E_\text{b} = \text{M}_\text{b}\left(\text{X}_\text{normal}\right)\)

\(E_\text{r} = \text{M}_\text{r}\left(\text{X}_\text{normal}\right)\)




where



	\(\text{M}_\text{b}\) is the model of energy demand as built using
trace data segmented from the baseline period.

	\(\text{M}_\text{r}\) is the model of energy demand as built using
trace data segmented from the reporting period.

	\(\text{X}_\text{normal}\) are temperature and other covariate
values for the weather normal year.









Gross predicted

The gross predicted method
estimates savings that have occurred from the completion of the project
interventions up to the date of the meter run.


\(E_\text{b} = \text{M}_\text{b}\left(\text{X}_\text{r}\right)\)

\(E_\text{r} = \text{M}_\text{r}\left(\text{X}_\text{r}\right)\)




where



	\(\text{M}_\text{b}\) is the model of energy demand as built using
trace data segmented from the baseline period.

	\(\text{M}_\text{r}\) is the model of energy demand as built using
trace data segmented from the reporting period.

	\(\text{X}_\text{r}\) are temperature and other covariate
values for reporting period.









Gross observed

The gross observed method
estimates savings that have occurred from the completion of the project
interventions up to the date of the meter run.


\(E_\text{b} = \text{M}_\text{b}\left(\text{X}_\text{r}\right)\)

\(E_\text{r} = \text{A}_\text{r}\)




where



	\(\text{M}_\text{b}\) is the model of energy demand as built using
trace data segmented from the baseline period.

	\(\text{A}_\text{r}\) are the actual observed energy demand values
from the trace data segmented from the baseline period. If the actual
data has missing values, these are interpolated using gross predicted
values (i.e., \(\text{M}_\text{r}\left(\text{X}_\text{r}\right)\)).

	\(\text{X}_\text{r}\) are temperature and other covariate
values for reporting period.











Aggregation rules

Because even an individual project may have multiple traces describing its
energy demand, we must be able to aggregate trace-level results before we can
obtain project-level or portfolio-level savings. Ideally, this aggregation is
a simple sum of trace-level values. However, trace-level results are often
littered with messy results which must be accounted for; some may be missing
data, have bad model fits, or have entirely failed model builds. The EEmeter
must successfully handle each of these cases, or risk invalidating results for
entire portfolios.

The aggregation steps are as follows:


	Select scope (project, portfolio) and gather all trace data available in
that scope



	Select baseline and reporting period. For portfolio level aggregations in
which baseline and reporting periods may not align, select reporting period
type and use the default baseline period for each project.



	Group traces by interpretation



	Compute \(E_\text{b}\) and \(E_\text{r}\):



	Compute (or retrieve) \(E_\text{t,b}\) and \(E_\text{t,r}\) for
each trace \(\text{t}\).

	Determine, for each \(E_\text{t,b}\) and \(E_\text{t,r}\) whether
or not it meets criteria for
inclusion in aggregation.

	Discard both \(E_\text{t,b}\) and \(E_\text{t,r}\) for any trace
for which either \(E_\text{t,b}\) or \(E_\text{t,r}\) has been
discarded.

	Compute \(E_\text{b} = \sum_{\text{t}}E_\text{t,b}\)
and \(E_\text{r} = \sum_{\text{t}}E_\text{t,r}\) for remaining
traces. Errors are propagated according to the principles in
Error propagation.








	Compute savings from \(E_\text{b}\) and \(E_\text{r}\) as usual.






Inclusion criteria

For inclusion in aggregates, \(E_\text{t,b}\) and \(E_\text{t,r}\) must
meet the following criteria


	If ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED, which represents solar
generation, is available, and if solar panels were installed as one of the
project interventions, blank \(E_\text{t,b}\) should be replaced with 0.

	Model has been successfully built.








Error propagation

Errors are propagated as if they followed \(\chi^2\) distributions.




Weather data matching

Since weather and temperature data is so central to the activity of the
EEmeter, the particulars of how weather data is obtained for a project is often
of interest. Weather data sources are determined automatically within the
EEmeter using an internal mapping [3] between ZIP codes [4] and weather
stations. The source of the weather normal data may differ from the source of
the observed weather data.

There is a jupyter [https://jupyter.org/] notebook outlining the process of
constructing the weather data available
here [https://github.com/openeemeter/eemeter/blob/master/scripts/weather_stations_zipcodes_climate_zones.ipynb].




	[1]	Additional information on why this method is used in preference to
other methods is described in the Introduction.







	[2]	This is not quite true for
structural change models. This is
covered in more detail in Modeling Overview.







	[3]	Available on github [https://github.com/openeemeter/eemeter/tree/master/eemeter/resources].







	[4]	The ZIP codes used in this mapping aren’t strictly ZIP codes, they’re
actually ZCTAs.










          

      

      

    

  

    
      
          
            
  


Modeling Overview


Basic modeling principles


Model error




Data sufficiency






Types of models


Weekday and Seasonal effects regression model




Hidden markov model









          

      

      

    

  

    
      
          
            
  


Glossary


	annualized weather normal: an estimate of annual energy demand under a
weather normal.




	baseline: a pre-intervention reference point or starting point from
which to compare post-intervention
energy demand.




	baseline period: a time period before a
retrofit of interest for which to model, observe,
or estimate energy performance.
Generally used in reference to a
reporting period or set of reporting
periods.




	building performance: see energy performance.




	demand capacity: the extent to which
energy-performance increases from a
baseline for a reporting period
following an intervention.




	demand response project: a set of
interventions designed to shift the time of
day or day of week of
energy-demand, generally toward off-peak
hours.




	end use: an energy-consuming service such as lighting, space cooling,
space heating, refrigeration, or water heating, particularly as provided by
a building or set of buildings.




	end use demand: the extent to which an end use
is needed. May vary by season, occupancy, time of day, day of week, or
purpose of building.




	energy demand: the amount of energy needed to satisfy
end use demand.




	energy efficiency project: a set of
interventions designed to reduce overall
energy demand relative to
equivalent end use demand.




	energy model: a mathematical description of
energy demand, particularly
in response to end use demand scenarios.




	energy savings: an increase in
energy performance
indicating lower energy demand for
equivalent end use demand.




	energy performance: the extent to which
end use demand causes
energy demand. Higher performance
indicates lower energy demand for equivalent end use demand. Sometimes
referred to as building performance.




	energy trace: see trace




	gross observed: an estimate of
energy demand over the
reporting period as given by
baseline models and observed values from the
reporting period.




	gross predicted: an estimate of
energy demand as given by the
baseline and reporting models evaluated over the
reporting period.




	intervention: a set of upgrades or performance improvements on physical
infrastructure of an existing building
(see retrofit), or of behavior of individuals
living in an existing building.




	modeling period: a period of time over which an
energy model is to be created for a
particular trace. This is a generalization of
baseline and
reporting periods. Modeling periods
generally fall into one of those two categories.




	projected baseline energy demand: a counterfactual estimate of
energy demand as it might have been under
a particular end use demand scenario had an
intervention not occurred.




	project: an intervention or
retrofit for which there is an expected change in
energy demand.




	reporting period: a time period after a
retrofit of interest over which to model,
observe, or estimate energy performance.
Generally used in reference to a
baseline period.




	retrofit: a set of interventions taking
place at a particular building or site which modify pre-existing
structures, installations or appliances.




	structural change model: a model which takes tries to determine the
most probably extents of baseline and
reporting periods for a
project given its trace
data.




	trace: a single time series of measured values associated with units at
a particular (not necessarily fixed) frequency.




	trace interpretation: the meaning of the trace data. Possible
interpretations are outlined in eemeter.structures




	Typical Meteorological Year 3 (TMY3): A set of
publicly available [http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/]
weather normals designed by the National
Renewable Energy Laboratory (NREL). Used by EEMeter for
weather normalization.




	weather normalization: a technique to account for differences in
end use demand due to variations in weather
patterns which uses a model of weather-dependent
energy demand to determine a counterfactual
energy demand under a weather conditions described by a
weather normal.




	weather normal: a set of (not necessarily observed) weather data
designed to reflect a “typical” weather scenario. Often covers a time
period of 1 year. Used in
weather normalization.
See TMY3.




	ZIP Code Tabulation Area (ZCTA): a set of geographical areas based on
US Postal Service (USPS) ZIP codes, necessitated by the fact that ZIP codes
do not map easily onto geographies. Built and maintained by the US Census
Bureau. Contains only about three quarters of valid ZIP codes. ZIP code and
ZCTA do not always match.
More information [https://www.census.gov/geo/reference/zctas.html].







          

      

      

    

  

    
      
          
            
  


Why open source?

All of our savings algorithms are free and open source. We don’t believe that
standard weights and measures should be the private property of any particular
entity. It’s much better for everyone, from contractors to program
administrators, if the measurement tools are equally available to everyone.





          

      

      

    

  

    
      
          
            
  


eemeter



	Installation

	Topics
	Basic Usage: eemeter package

	Running a meter

	Data preparation

	Inspecting results

	Weather Data Caching





	API
	eemeter.ee

	eemeter.io

	eemeter.modeling

	eemeter.processors

	eemeter.structures

	eemeter.weather





	Development
	Testing

	Building Documentation













          

      

      

    

  

    
      
          
            
  


Installation


Note

If you are installing python for the first time, we recommend using
Anaconda [https://www.continuum.io/downloads], a free python distribution with builds for windows, mac os,
and linux.



To get started with the eemeter, use pip:

$ pip install eemeter





Make sure you have the latest version:

>>> import eemeter; eemeter.get_version()
'0.5.11'





The eemeter package itself does not use C extensions. However, some eemeter
dependencies do. These can be a bit trickier to install. If issues arise when
pip installing eemeter, verify that the packges with C extensions are properly
installing. Specifically, verify that these installation commands complete
without errors:

pip install lxml
pip install numpy





If they fail, please see follow installation instructions for those packages
(lxml [http://lxml.de/installation.html], numpy [http://scipy.org/install.html]).

Some statsmodels installations require numpy to be installed. If you run into
errors with the statsmodels installation, be sure numpy is installed before
attempting to install statsmodels. Once statsmodels is installed correctly,
install eemeter.





          

      

      

    

  

    
      
          
            
  


Topics



	Basic Usage: eemeter package

	Running a meter

	Data preparation

	Inspecting results

	Weather Data Caching









          

      

      

    

  

    
      
          
            
  


Basic Usage: eemeter package

This tutorial is also available as a jupyter notebook


Note:

Most users of the EEmeter stack do not directly use the eemeter
package for loading their data. Instead, they use the datastore
application, which uses the eemeter internally. To learn to use the
datastore, head over to the datastore basic usage tutorial.






Running a meter

Please download a preformatted input file.

We can load this input file into memory with the following:



In [1]:






import json

with open('meter_input_example.json', 'r') as f:  # modify to point to your downloaded input file.
    meter_input = json.load(f)







The file has a single trace of hourly electricity consumption data and
some associated project data. Its contents looks like this:



In [2]:






!head -15 meter_input_example.json













{
  "type": "SINGLE_TRACE_SIMPLE_PROJECT",
  "trace": {
    "type": "ARBITRARY_START",
    "interpretation": "ELECTRICITY_CONSUMPTION_SUPPLIED",
    "unit": "KWH",
    "trace_id": "TRACE_ID_123",
    "interval": "daily",
    "records": [
      {
        "start": "2011-01-01T00:00:00+00:00",
        "value": 57.8,
        "estimated": false
      },
      {








In [3]:






!tail -25 meter_input_example.json













        "estimated": false
      },
      {
        "start": "2015-01-01T00:00:00+00:00",
        "value": null,
        "estimated": false
      }
    ]
  },
  "project": {
    "type": "PROJECT_WITH_SINGLE_MODELING_PERIOD_GROUP",
    "zipcode": "50321",
    "project_id": "PROJECT_ID_ABC",
    "modeling_period_group": {
      "baseline_period": {
        "start": null,
        "end": "2013-06-01T00:00:00+00:00"
      },
      "reporting_period": {
        "start": "2013-07-01T00:00:00+00:00",
        "end": null
      }
    }
  }
}






Next, we can create a meter, model and formatter. These work in tandem
to create a model of energy usage.

The meter coordinates loading the input data, matching it with
appropriate weather data, and passing it to the formatter and model. It
then uses these to calculate a set of outputs, including energy savings
estimates such as annualized weather normalized usage.

The formatter formats the trace and project data for use within the
model.

The model fits a model of energy usage to this formatted data which
can be used, given covariate weather data, to predict or model energy
usage over an arbitrary period of time.



In [4]:






from eemeter.ee.meter import EnergyEfficiencyMeter
from eemeter.modeling.models import CaltrackMonthlyModel
from eemeter.modeling.formatters import ModelDataFormatter

meter = EnergyEfficiencyMeter()
model = (CaltrackMonthlyModel, {"fit_cdd": False, "grid_search": True})
formatter = (ModelDataFormatter, {"freq_str": "D"})







The meter we created is an instance of the EEmeter class which operates
on single energy traces.

The model we created is a tuple of (model class, model keyword
arguments), not an instantiation of the model. We do it this way to
allow easy creation of multiple instances of the model class.

The formatter is, like the model, a tuple of (formatter class, formatter
keyword arguments), for the same reason - we want to make multiple
instances of the formatter class.

These can be used directly to “evaluate” the meter on the meter input.
We’ll store the output in meter_output.



In [5]:






meter_output = meter.evaluate(meter_input, model=model, formatter=formatter)







This meter_ouput is quite verbose, so we’ll export it to a json file
which is a bit more readable.



In [6]:






with open('meter_output_example.json', 'w') as f:  # change this path if desired.
    json.dump(meter_output, f, indent=2)







The content of this file will look something like this:



In [7]:






!head -40 meter_output_example.json













{
  "status": "SUCCESS",
  "failure_message": null,
  "logs": [
    "Using weather_source ISDWeatherSource(\"725460\")",
    "Using weather_normal_source TMY3WeatherSource(\"725460\")"
  ],
  "eemeter_version": "0.5.3",
  "model_class": "CaltrackMonthlyModel",
  "model_kwargs": {
    "fit_cdd": false,
    "grid_search": true
  },
  "formatter_class": "ModelDataFormatter",
  "formatter_kwargs": {
    "freq_str": "D"
  },
  "weather_source_station": "725460",
  "weather_normal_source_station": "725460",
  "derivatives": [
    {
      "modeling_period_group": [
        "baseline",
        "reporting"
      ],
      "series": "Cumulative baseline model minus reporting model, normal year",
      "description": "Total predicted usage according to the baseline model over the normal weather year, minus the total predicted usage according to the reporting model over the normal weather year. Days for which normal year weather data does not exist are removed.",
      "orderable": [
        null
      ],
      "value": [
        2479.015638036155
      ],
      "variance": [
        7354.084609086982
      ]
    },
    {
      "modeling_period_group": [
        "baseline",






Note how this file is organized: it contains a summary of the operations
done during meter execution, including everything necessary to recreate
the meter run, like the model class and keyword arguments used to
initialize it, and the weather data (degrees F, called
“demand_fixture”) that was used in model building.

Not everyone has data ready to go, so if you are in that bucket, the
next section covers how you can get started with data of your own.




Data preparation

All we’ll be doing in this section is creating a data structure that has
the same format as meter_input_example.json file above. We are using
the eemeter EnergyTrace helper structure.

Of course, this is not the only way to get data into the necessary
format; use this for inspiration, but make changes as necessary to
accomodate the particulars of your dataset.



In [8]:






# library imports
from eemeter.structures import EnergyTrace
from eemeter.io.serializers import ArbitraryStartSerializer
from eemeter.ee.meter import EnergyEfficiencyMeter
import pandas as pd
import pytz







First, we import the energy data from the sample CSV and transform it
into records



In [9]:






energy_data = pd.read_csv('sample-energy-data_project-ABC_zipcode-50321.csv',
                          parse_dates=['date'], dtype={'zipcode': str})
records = [{
    "start": pytz.UTC.localize(row.date.to_datetime()),
    "value": row.value,
    "estimated": row.estimated,
} for _, row in energy_data.iterrows()]







The records we created look like this:



In [10]:






records[:3]  # the first three records









Out[10]:






[{'estimated': False,
  'start': datetime.datetime(2011, 1, 1, 0, 0, tzinfo=<UTC>),
  'value': 57.8},
 {'estimated': False,
  'start': datetime.datetime(2011, 1, 2, 0, 0, tzinfo=<UTC>),
  'value': 64.8},
 {'estimated': False,
  'start': datetime.datetime(2011, 1, 3, 0, 0, tzinfo=<UTC>),
  'value': 49.5}]







Next, we load our records into an EnergyTrace. We give it units
"KWH" and interpretation "ELECTRICITY_CONSUMPTION_SUPPLIED",
which means that this is electricity consumed by the building and
supplied by a utility (rather than by solar panels or other on-site
generation). We also pass in an instance of the record serializer
ArbitraryStartSerializer to show it how to interpret the records.



In [11]:






energy_trace = EnergyTrace(
    records=records,
    unit="KWH",
    interpretation="ELECTRICITY_CONSUMPTION_SUPPLIED",
    serializer=ArbitraryStartSerializer(),
    trace_id='TRACE_ID_123',
    interval='daily'
)







The energy trace data we created looks like this:



In [12]:






energy_trace.data[:3]  # first three records









Out[12]:








  
    
      	
      	value
      	estimated
    

  
  
    
      	2011-01-01 00:00:00+00:00
      	57.8
      	False
    

    
      	2011-01-02 00:00:00+00:00
      	64.8
      	False
    

    
      	2011-01-03 00:00:00+00:00
      	49.5
      	False
    

  







Now we load the rest of the project data from the sample project data
CSV. This CSV includes the project_id (we don’t use it in this
tutorial, but this is how you might identify the saved meter results),
the ZIP code of the building, and the dates retrofit work for this
project started and completed.



In [13]:






project_data = pd.read_csv('sample-project-data.csv',
                           parse_dates=['retrofit_start_date', 'retrofit_end_date']).iloc[0]







Here’s what our project data looks like.



In [14]:






project_data









Out[14]:






project_id                             ABC
zipcode                              50321
retrofit_start_date    2013-06-01 00:00:00
retrofit_end_date      2013-07-01 00:00:00
Name: 0, dtype: object









In [15]:






zipcode = "{:05d}".format(project_data.zipcode)
retrofit_start_date = pytz.UTC.localize(project_data.retrofit_start_date)
retrofit_end_date = pytz.UTC.localize(project_data.retrofit_end_date)







Here’s an example of how to get this data into the format the meter
expects (exactly the format of the meter_input_example.json from
above).



In [16]:






from collections import OrderedDict

def serialize_meter_input(trace, zipcode, retrofit_start_date, retrofit_end_date):

    data = OrderedDict([
        ("type", "SINGLE_TRACE_SIMPLE_PROJECT"),
        ("trace", trace_serializer(trace)),
        ("project", project_serializer(zipcode, retrofit_start_date, retrofit_end_date)),
    ])

    return data


def trace_serializer(trace):
    data = OrderedDict([
        ("type", "ARBITRARY_START"),
        ("interpretation", trace.interpretation),
        ("unit", trace.unit),
        ("trace_id", trace.trace_id),
        ("interval", trace.interval),
        ("records", [
            OrderedDict([
                ("start", start.isoformat()),
                ("value", record.value if pd.notnull(record.value) else None),
                ("estimated", bool(record.estimated)),
            ])
            for start, record in trace.data.iterrows()
        ]),
    ])
    return data


def project_serializer(zipcode, retrofit_start_date, retrofit_end_date):
    data = OrderedDict([
        ("type", "PROJECT_WITH_SINGLE_MODELING_PERIOD_GROUP"),
        ("zipcode", zipcode),
        ("project_id", 'PROJECT_ID_ABC'),
        ("modeling_period_group", OrderedDict([
            ("baseline_period", OrderedDict([
                ("start", None),
                ("end", retrofit_start_date.isoformat()),
            ])),
            ("reporting_period", OrderedDict([
                ("start", retrofit_end_date.isoformat()),
                ("end", None),
            ]))
        ]))
    ])
    return data









In [17]:






my_meter_input = serialize_meter_input(
    energy_trace, zipcode, retrofit_start_date, retrofit_end_date)









In [18]:






with open('my_meter_input.json', 'w') as f:
    json.dump(my_meter_input, f, indent=2)









In [19]:






!head -15 my_meter_input.json













{
  "type": "SINGLE_TRACE_SIMPLE_PROJECT",
  "trace": {
    "type": "ARBITRARY_START",
    "interpretation": "ELECTRICITY_CONSUMPTION_SUPPLIED",
    "unit": "KWH",
    "trace_id": "TRACE_ID_123",
    "interval": "daily",
    "records": [
      {
        "start": "2011-01-01T00:00:00+00:00",
        "value": 57.8,
        "estimated": false
      },
      {








In [20]:






!tail -25 my_meter_input.json













        "estimated": false
      },
      {
        "start": "2015-01-01T00:00:00+00:00",
        "value": null,
        "estimated": false
      }
    ]
  },
  "project": {
    "type": "PROJECT_WITH_SINGLE_MODELING_PERIOD_GROUP",
    "zipcode": "50321",
    "project_id": "PROJECT_ID_ABC",
    "modeling_period_group": {
      "baseline_period": {
        "start": null,
        "end": "2013-06-01T00:00:00+00:00"
      },
      "reporting_period": {
        "start": "2013-07-01T00:00:00+00:00",
        "end": null
      }
    }
  }
}






Now we can run this through the meter exactly the same way we did
before:



In [21]:






my_meter_output = meter.evaluate(my_meter_input, model=model, formatter=formatter)










Inspecting results

Now that we have some results at our fingertips, let’s inspect them.
We’ll be using the meter output from the first example trace.

The output is mostly made up of a set of “derivatives”. These aren’t
derivatives in the calculus sense - they’re just derived from the model
output.

Let’s take a look at the first one.



In [22]:






derivative = meter_output["derivatives"][0]







We can take a peek at the contents by looking at the keys of the dict.



In [23]:






[k for k in derivative.keys()]









Out[23]:






['modeling_period_group',
 'series',
 'description',
 'orderable',
 'value',
 'variance']







Each derivative is a series with a name and a description



In [24]:






derivative['series'], derivative['description']









Out[24]:






('Cumulative baseline model minus reporting model, normal year',
 'Total predicted usage according to the baseline model over the normal weather year, minus the total predicted usage according to the reporting model over the normal weather year. Days for which normal year weather data does not exist are removed.')







The values associated with the derivative are stored in value, their
variances are stored in variance, and the orderables act as keys. A
single orderable of None indicates (as in this case) that the value and
variance are singleton values.



In [25]:






derivative['orderable'], derivative['value'], derivative['variance']









Out[25]:






([None], [2479.015638036155], [7354.0846090869818])







Other derivatives are computed as well:



In [26]:






print(json.dumps([(d['series'], d['description']) for d in sorted(meter_output["derivatives"], key=lambda o: o['series'])], indent=2))













[
  [
    "Baseline model minus observed, reporting period",
    "Predicted usage according to the baseline model minus observed usage over the reporting period."
  ],
  [
    "Baseline model minus reporting model, normal year",
    "Predicted usage according to the baseline model over the normal weather year, minus the predicted usage according to the reporting model over the normal weather year."
  ],
  [
    "Baseline model, baseline period",
    "Predicted usage according to the baseline model over the baseline period."
  ],
  [
    "Baseline model, normal year",
    "Predicted usage according to the baseline model over the normal weather year."
  ],
  [
    "Baseline model, reporting period",
    "Predicted usage according to the baseline model over the reporting period."
  ],
  [
    "Cumulative baseline model minus observed, reporting period",
    "Total predicted usage according to the baseline model minus observed usage over the reporting period. Days for which reporting period weather data or usage do not exist are removed."
  ],
  [
    "Cumulative baseline model minus reporting model, normal year",
    "Total predicted usage according to the baseline model over the normal weather year, minus the total predicted usage according to the reporting model over the normal weather year. Days for which normal year weather data does not exist are removed."
  ],
  [
    "Cumulative baseline model, normal year",
    "Total predicted usage according to the baseline model over the normal weather year. Days for which normal year weather data does not exist are removed."
  ],
  [
    "Cumulative baseline model, reporting period",
    "Total predicted usage according to the baseline model over the reporting period. Days for which reporting period weather data does not exist are removed."
  ],
  [
    "Cumulative observed, baseline period",
    "Total observed usage over the baseline period. Days for which weather data does not exist are NOT removed."
  ],
  [
    "Cumulative observed, reporting period",
    "Total observed usage over the reporting period. Days for which weather data does not exist are NOT removed."
  ],
  [
    "Cumulative reporting model, normal year",
    "Total predicted usage according to the reporting model over the reporting period. Days for which normal year weather data does not exist are removed."
  ],
  [
    "Inclusion mask, baseline period",
    "Mask for baseline period data which is included in model and savings cumulatives."
  ],
  [
    "Inclusion mask, reporting period",
    "Mask for reporting period data which is included in model and savings cumulatives."
  ],
  [
    "Observed, baseline period",
    "Observed usage over the baseline period."
  ],
  [
    "Observed, project period",
    "Observed usage over the project period."
  ],
  [
    "Observed, reporting period",
    "Observed usage over the reporting period."
  ],
  [
    "Reporting model, normal year",
    "Predicted usage according to the reporting model over the reporting period."
  ],
  [
    "Reporting model, reporting period",
    "Predicted usage according to the reporting model over the reporting period."
  ],
  [
    "Temperature, baseline period",
    "Observed temperature (degF) over the baseline period."
  ],
  [
    "Temperature, normal year",
    "Observed temperature (degF) over the normal year."
  ],
  [
    "Temperature, reporting period",
    "Observed temperature (degF) over the reporting period."
  ]
]










          

      

      

    

  

    
      
          
            
  


Weather Data Caching

In order to avoid putting an unnecessary load on external weather
sources, weather data is cached by default using json in a directory
~/.eemeter/cache. The location of the directory can be changed by
setting:

$ export EEMETER_WEATHER_CACHE_DIRECTORY=<full path to directory>









          

      

      

    

  

    
      
          
            
  


API


eemeter.ee



	eemeter.ee.meter








eemeter.io



	eemeter.io.serializers

	eemeter.io.parsers








eemeter.modeling



	eemeter.modeling.formatters

	eemeter.modeling.models








eemeter.processors



	eemeter.processors.dispatchers

	eemeter.processors.interventions

	eemeter.processors.location








eemeter.structures


	
class eemeter.structures.EnergyTrace(interpretation, data=None, records=None, unit=None, placeholder=False, serializer=None, trace_id=None, interval=None)

	Container for time series energy data.





	Parameters:	
	interpretation (str) – The way this energy time series in the data attribute should be
interpreted. The complete list of supported options is as follows:


	ELECTRICITY_CONSUMPTION_SUPPLIED: Represents the amount of
utility-supplied electrical energy consumed on-site, as metered at
a single usage point, such as a utility-owned electricity meter.
Specifically does not include consumption of electricity generated
on site, such as by locally installed solar photovoltaic panels.

	ELECTRICITY_CONSUMPTION_TOTAL: Represents the amount of
electrical energy consumed on-site, including both utility-supplied
and on-site generated electrical energy. Equivalent, for a single
electricity meter, to ELECTRICITY_CONSUMPTION_SUPPLIED -
ELECTRICITY_ON_SITE_GENERATION_CONSUMED.

	ELECTRICITY_CONSUMPTION_NET: Represents the amount of
utility-supplied electrical energy consumed on-site minus the amount
of unconsumed electrical energy generated on site and fed back into
the grid at a single usage point, such as a utility-owned electricity
meter. Equivalent, for a single electricity meter, to
ELECTRICITY_CONSUMPTION_SUPPLIED -
ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED.

	ELECTRICITY_ON_SITE_GENERATION_TOTAL: Represents the amount
of locally generated electrical energy consumed on-site plus the
amount of locally generated elecrical energy returned to the grid,
as metered at a single usage point. Equivalent, for a single
electricity meter, to ELECTRICITY_ON_SITE_GENERATION_CONSUMED
+ ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED.

	ELECTRICITY_ON_SITE_GENERATION_CONSUMED: Represents the
amount of locally generated electrical energy consumed on-site, such
as energy generated by solar photovoltaic panels.

	ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED: Represents the
amount of excess locally generated energy, which instead of being
consumed on-site, is fed back into the grid or sold back a utility.

	NATURAL_GAS_CONSUMPTION_SUPPLIED: Represents the amount of
energy supplied by a utility in the form of natural gas and used on
site, as metered at a single usage point. Though under the labeling
scheme used for electricity interpretetations the labels
NATURAL_GAS_CONSUMPTION_TOTAL and
NATURAL_GAS_CONSUMPTION_NET would be equivalent for natural
gas, NATURAL_GAS_CONSUMPTION_SUPPLIED is prefered for its
greater specificity.





	data (pandas.DataFrame, default None) – A pandas DataFrame with two columns and a timezone-aware DatetimeIndex.
Timestamps in the index are assumed to refer to the start of each
period, and the period ends are assumed to coincide with the start
of the following period. Thus, the value of the last datetime should
always be NaN, since is purpose is only to cap the end of the
last period, and not to represent a time period over which energy was
consumed. The DatetimeIndex does not need to have uniform frequency,
such as those specified in pandas using the freq attribute.


	value: Amount of energy between this index and the next.

	estimated: Whether or not the value was estimated.
Particularly relevant for monthly billing data.



If serializer instance is provided, this should instead be
records in the format expected by the serializer.



	unit (str) – The name of the unit in which the energy time series is given. These
names are normalized to either 'KWH' or 'THERM' as
follows:


	'kwh' becomes 'KWH' with no unit conversion
multiplier.

	'kWh' becomes 'KWH' with no unit conversion
multiplier.

	'KWH' becomes 'KWH' with no unit conversion
multiplier.

	'therm' becomes 'THERM' with no unit conversion
multiplier.

	'therms' becomes 'THERM' with no unit conversion
multiplier.

	'thm' becomes 'THERM' with no unit conversion
multiplier.

	'THERM' becomes 'THERM' with no unit conversion
multiplier.

	'THERMS' becomes 'THERM' with no unit conversion
multiplier.

	'THM' becomes 'THERM' with no unit conversion
multiplier.

	'wh' becomes 'KWH' with a unit conversion
multiplier of 0.001.

	'Wh' becomes 'KWH' with a unit conversion
multiplier of 0.001.

	'WH' becomes 'KWH' with a unit conversion
multiplier of 0.001.





	placeholder (bool) – Indicates that this instance is a placeholder - that while for some
reason the data associated with it is unavailable, its existence is
still important in considering a whole site.

	serializer (consumption.BaseSerializer) – Serializer instance to be used to deserialize records into a pandas
dataframe. Must supply the to_dataframe(records) method.














	
class eemeter.structures.EnergyTraceSet(traces, labels=None)

	A container for energy traces which ensures that each is labeled.





	Parameters:	
	traces (list or dict of eemeter.structures.EnergyTrace objects) – EnergyTrace objects to be included in this list.

	labels (list of str) – Unique labels for traces, used only if traces is not a dictionary.










	
itertraces()

	Iterates over traces, yielding (label, trace) pairs.










	
class eemeter.structures.Intervention(start_date, end_date=None)

	Represents an intervention with a start date, and maybe an end date.
Multiple interventions can be composed within a project.





	Parameters:	
	start_date (datetime.datetime) – Must be timezone aware

	end_date (datetime.datetime or None, default None) – Must be timezone aware. If None, intervention is assumed to be ongoing.














	
class eemeter.structures.ModelingPeriod(interpretation, start_date=None, end_date=None)

	Represents a period of time over which to select data from a Trace
for contiguous modeling. Carries an “interpretation”, for which there are
two options, “BASELINE” and “REPORTING”. The period is defined by a
single optional start date and a single optional end date. If the start
date is not given, the start date is considered to be negative infinity;
if the end date is not given, the end date is considered to be positive
infinity.

A ModelingPeriod is a time period, defined by start and end dates, over
which the process behind a trace can be expected, for modeling purposes,
to have roughly the same energy response to end use demand. Note that this
criterion might not be particularly well specified without reference to a
particular intervention and set of modeling conditions.





	Parameters:	
	interpretation (str, {"BASELINE", "REPORTING"}) – The way this ModelingPeriod should be interpreted.



	“BASELINE” means that this modeling period represents the time
before an intervention or set of interventions.

	“REPORTING” means that this modeling period represents the time
after an intervention or set of interventions.








	start_date (datetime.datetime or None) – The date marking the earliest date of the ModelingPeriod. None
indicates a start_date of negative infinity. If interpretation is
“REPORTING”, start_date cannot be None.

	end_date (datetime.datetime or None) – The date marking the latest date of the ModelingPeriod. None
indicates an end_date of positive infinity. If interpretation is
“BASELINE”, end_date cannot be None.














	
class eemeter.structures.ModelingPeriodSet(modeling_periods, groupings)

	Represents a set of labeled modeling periods of interest, grouped into
meaningful comparison sets. Labels can be arbitrary.

Basic usage:

>>> modeling_periods = {
...     "modeling_period_1": ModelingPeriod(
...         "BASELINE",
...         end_date=datetime(2000, 1, 1, tzinfo=pytz.UTC),
...     ),
...     "modeling_period_2": ModelingPeriod(
...         "REPORTING",
...         start_date=datetime(2000, 2, 1, tzinfo=pytz.UTC),
...     ),
...     "modeling_period_3": ModelingPeriod(
...         "REPORTING",
...         start_date=datetime(2000, 2, 1, tzinfo=pytz.UTC),
...     ),
... }
...
>>> grouping = [
...     ("modeling_period_1", "modeling_period_2"),
...     ("modeling_period_1", "modeling_period_3"),
... ]
...
>>> mps = ModelingPeriodSet(modeling_periods, grouping)










	
class eemeter.structures.Project(energy_trace_set, interventions, site, project_id=None)

	Container for storing project data.





	Parameters:	
	trace_set (eemeter.structures.TraceSet) – Complete set of energy traces for this project. For a project site that
has, for example, two electricity meters, each with two traces
(supplied electricity kWh, and solar-generated kWh) and one natural gas
meter with one trace (consumed natural gas therms), the trace_set
should contain 5 traces, regardless of the availablity of that data.
Traces which are unavailable should be represented as
‘placeholder’ traces.

	interventions (list of eemeter.structures.Intervention) – Complete set of interventions, planned, ongoing, or completed,
that have taken or will take place at this site as part of this
project.

	site (eemeter.structures.Site) – The site of this project.














	
class eemeter.structures.ZIPCodeSite(zipcode)

	ZIP-code-based site location descriptor.





	Parameters:	zipcode (str) – A five-digit zipcode identifier.












eemeter.weather



	GSODWeatherSource

	ISDWeatherSource

	TMY3WeatherSource

	Location











          

      

      

    

  

    
      
          
            
  


eemeter.ee.meter


	
class eemeter.ee.meter.EnergyEfficiencyMeter(default_model_mapping=None, default_formatter_mapping=None)

	Meter for determining energy efficiency derivatives for a single
traces.





	Parameters:	default_model_mapping (dict) – mapping between (interpretation, frequency) tuples used to select
the default model (if none is explicitly provided in .evaluate()).






	
evaluate(meter_input, formatter=None, model=None, weather_source=None, weather_normal_source=None)

	Main entry point to the meter, which models traces and calculates
derivatives.





	Parameters:	
	meter_input (dict) – Serialized input containing trace and project data.

	formatter (tuple of (class, dict), default None) – Formatter for trace and weather data. Used to create input
for model. If None is provided, will be auto-matched to appropriate
default formatter. Class name can be provided as a string
(class.__name__) or object.

	model (tuple of (class, dict), default None) – Model to use in modeling. If None is provided,
will be auto-matched to appropriate default model.
Class can be provided as a string (class.__name__) or class object.

	weather_source (eemeter.weather.WeatherSource) – Weather source to be used for this meter. Overrides weather source
found using project.site. Useful for test mocking.

	weather_normal_source (eemeter.weather.WeatherSource) – Weather normal source to be used for this meter. Overrides weather
source found using project.site. Useful for test mocking.






	Returns:	results – Dictionary of results with the following keys:


	"status": SUCCESS/FAILURE

	"failure_message": if FAILURE, message indicates reason
for failure, may include traceback

	"logs": list of collected log messages

	"model_class": Name of model class

	"model_kwargs": dict of model keyword arguments
(settings)

	"formatter_class": Name of formatter class

	"formatter_kwargs": dict of formatter keyword arguments
(settings)

	"eemeter_version": version of the eemeter package

	"modeled_energy_trace": modeled energy trace

	"derivatives": derivatives for each interpretation

	"weather_source_station": Matched weather source station.

	"weather_normal_source_station": Matched weather normal
source station.








	Return type:	dict



















          

      

      

    

  

    
      
          
            
  


eemeter.io.serializers


	
class eemeter.io.serializers.ArbitrarySerializer(parse_dates=False)

	Arbitrary data at arbitrary non-overlapping intervals.
Often used for montly billing data. Records must all have
the “start” key and the “end” key. Overlaps are not allowed and
gaps will be filled with NaN.

For example:

>>> records = [
...     {
...         "start": datetime(2013, 12, 30, tzinfo=pytz.utc),
...         "end": datetime(2014, 1, 28, tzinfo=pytz.utc),
...         "value": 1180,
...     },
...     {
...         "start": datetime(2014, 1, 28, tzinfo=pytz.utc),
...         "end": datetime(2014, 2, 27, tzinfo=pytz.utc),
...         "value": 1211,
...         "estimated": True,
...     },
...     {
...         "start": datetime(2014, 2, 28, tzinfo=pytz.utc),
...         "end": datetime(2014, 3, 30, tzinfo=pytz.utc),
...         "value": 985,
...     },
... ]
...
>>> serializer = ArbitrarySerializer()
>>> df = serializer.to_dataframe(records)
>>> df
                            value estimated
2013-12-30 00:00:00+00:00  1180.0     False
2014-01-28 00:00:00+00:00  1211.0      True
2014-02-27 00:00:00+00:00     NaN     False
2014-02-28 00:00:00+00:00   985.0     False
2014-03-30 00:00:00+00:00     NaN     False










	
class eemeter.io.serializers.ArbitraryStartSerializer(parse_dates=False)

	Arbitrary start data at arbitrary non-overlapping intervals.
Records must all have the “start” key. The last data point
will be ignored unless an end date is provided for it.
This is useful for data dated to future energy use, e.g. billing for
delivered fuels.

For example:

>>> records = [
...     {
...         "start": datetime(2013, 12, 30, tzinfo=pytz.utc),
...         "value": 1180,
...     },
...     {
...         "start": datetime(2014, 1, 28, tzinfo=pytz.utc),
...         "value": 1211,
...         "estimated": True,
...     },
...     {
...         "start": datetime(2014, 2, 28, tzinfo=pytz.utc),
...         "value": 985,
...     },
... ]
...
>>> serializer = ArbitrarySerializer()
>>> df = serializer.to_dataframe(records)
>>> df
                            value estimated
2013-12-30 00:00:00+00:00  1180.0     False
2014-01-28 00:00:00+00:00  1211.0      True
2014-02-28 00:00:00+00:00     NaN     False










	
class eemeter.io.serializers.ArbitraryEndSerializer(parse_dates=False)

	Arbitrary end data at arbitrary non-overlapping intervals.
Records must all have the “end” key. The first data point
will be ignored unless a start date is provided for it.
This is useful for data dated to past energy use, e.g. electricity
or natural gas bills.

For example:

>>> records = [
...     {
...         "end": datetime(2013, 12, 30, tzinfo=pytz.utc),
...         "value": 1180,
...     },
...     {
...         "end": datetime(2014, 1, 28, tzinfo=pytz.utc),
...         "value": 1211,
...         "estimated": True,
...     },
...     {
...         "end": datetime(2014, 2, 28, tzinfo=pytz.utc),
...         "value": 985,
...     },
... ]
...
>>> serializer = ArbitrarySerializer()
>>> df = serializer.to_dataframe(records)
>>> df
                            value estimated
2013-12-30 00:00:00+00:00  1211.0      True
2014-01-28 00:00:00+00:00   985.0     False
2014-02-28 00:00:00+00:00     NaN     False












eemeter.io.parsers





          

      

      

    

  

    
      
          
            
  


eemeter.modeling.formatters

The formatter classes are designed to provide a standard interface to model
fit and predict methods. The formatters add weather data to daily or monthly
energy data. The interface assumes that the model class will be responsible
for applying data sufficiency rules and additional formatting necessary for
performing model fits or predictions.


	
class eemeter.modeling.formatters.ModelDataFormatter(freq_str)

	Formatter for model data of known or predictable frequency.
Basic usage:

>>> formatter = ModelDataFormatter("D")
>>> formatter.create_input(energy_trace, weather_source)
                           energy tempF
2013-06-01 00:00:00+00:00    3.10  74.3
2013-06-02 00:00:00+00:00    2.42  71.0
2013-06-03 00:00:00+00:00    1.38  73.1
                                   ...
2016-05-27 00:00:00+00:00    0.11  71.1
2016-05-28 00:00:00+00:00    0.04  78.1
2016-05-29 00:00:00+00:00    0.21  69.6
>>> index = pd.date_range('2013-01-01', periods=365, freq='D')
>>> formatter.create_input(index, weather_source)
                           tempF
2013-01-01 00:00:00+00:00   28.3
2013-01-02 00:00:00+00:00   31.0
2013-01-03 00:00:00+00:00   34.1
                            ...
2013-12-29 00:00:00+00:00   12.3
2013-12-30 00:00:00+00:00   26.0
2013-12-31 00:00:00+00:00   24.1






	
create_demand_fixture(index, weather_source)

	Creates a DatetimeIndex ed dataframe containing formatted
demand fixture data.





	Parameters:	
	index (pandas.DatetimeIndex) – The desired index for demand fixture data.

	weather_source (eemeter.weather.WeatherSourceBase) – The source of weather fixture data.






	Returns:	input_df – Predictably formatted input data. This data should be directly
usable as input to applicable model.predict() methods.




	Return type:	pandas.DataFrame












	
create_input(trace, weather_source)

	Creates a DatetimeIndex ed dataframe containing formatted
model input data formatted as follows.





	Parameters:	
	trace (eemeter.structures.EnergyTrace) – The source of energy data for inclusion in model input.

	weather_source (eemeter.weather.WeatherSourceBase) – The source of weather data.






	Returns:	input_df – Predictably formatted input data. This data should be directly
usable as input to applicable model.fit() methods.




	Return type:	pandas.DataFrame












	
daily_trace_data(trace)

	Transforms a trace for this formatter to a daily series






	
get_input_data_mask(input_data)

	Boolean list of missing/not missing values:
True  => missing
False => not missing






	
serialize_demand_fixture(demand_fixture_data)

	Serialize demand fixture data






	
serialize_input(input_data)

	Serialize input data










	
class eemeter.modeling.formatters.ModelDataBillingFormatter

	Formatter for model data of unknown or unpredictable frequency.
Basic usage:

>>> formatter = ModelDataBillingFormatter()
>>> energy_trace = EnergyTrace(
        "ELECTRICITY_CONSUMPTION_SUPPLIED",
        pd.DataFrame(
            {
                "value": [1, 1, 1, 1, np.nan],
                "estimated": [False, False, True, False, False]
            },
            index=[
                datetime(2011, 1, 1, tzinfo=pytz.UTC),
                datetime(2011, 2, 1, tzinfo=pytz.UTC),
                datetime(2011, 3, 2, tzinfo=pytz.UTC),
                datetime(2011, 4, 3, tzinfo=pytz.UTC),
                datetime(2011, 4, 29, tzinfo=pytz.UTC),
            ],
            columns=["value", "estimated"]
        ),
        unit="KWH")
>>> trace_data, temp_data = formatter.create_input(energy_trace, weather_source)
>>> trace_data
2011-01-01 00:00:00+00:00    1.0
2011-02-01 00:00:00+00:00    1.0
2011-03-02 00:00:00+00:00    2.0
2011-04-29 00:00:00+00:00    NaN
dtype: float64
>>> temp_data
period                    hourly
2011-01-01 00:00:00+00:00 2011-01-01 00:00:00+00:00  32.0
                          2011-01-01 01:00:00+00:00  32.0
                          2011-01-01 02:00:00+00:00  32.0
...                                                   ...
2011-03-02 00:00:00+00:00 2011-04-28 21:00:00+00:00  32.0
                          2011-04-28 22:00:00+00:00  32.0
                          2011-04-28 23:00:00+00:00  32.0
>>> index = pd.date_range('2013-01-01', periods=365, freq='D')
>>> formatter.create_input(index, weather_source)
                           tempF
2013-01-01 00:00:00+00:00   28.3
2013-01-02 00:00:00+00:00   31.0
2013-01-03 00:00:00+00:00   34.1
                            ...
2013-12-29 00:00:00+00:00   12.3
2013-12-30 00:00:00+00:00   26.0
2013-12-31 00:00:00+00:00   24.1






	
create_demand_fixture(index, weather_source)

	Creates a DatetimeIndex ed dataframe containing formatted
demand fixture data.





	Parameters:	
	index (pandas.DatetimeIndex) – The desired index for demand fixture data.

	weather_source (eemeter.weather.WeatherSourceBase) – The source of weather fixture data.






	Returns:	input_df – Predictably formatted input data. This data should be directly
usable as input to applicable model.predict() methods.




	Return type:	pandas.DataFrame












	
create_input(trace, weather_source)

	Creates two DatetimeIndex ed dataframes containing formatted
model input data formatted as follows.





	Parameters:	
	trace (eemeter.structures.EnergyTrace) – The source of energy data for inclusion in model input.

	weather_source (eemeter.weather.WeatherSourceBase) – The source of weather data.






	Returns:	
	trace_data (pandas.DataFrame) – Predictably formatted trace data with estimated data removed.
This data should be directly usable as input to applicable
model.fit() methods.



	temperature_data (pandas.DataFrame) – Predictably formatted temperature data with a pandas
MultiIndex.  The MultiIndex contains two levels
- ‘period’, which corresponds directly to the trace_data index,
and ‘hourly’ or ‘daily’, which contains, respectively, hourly or
daily temperature data. This is intended for use like the
following:

>>> temperature_data.groupby(level='period')





This data should be directly usable as input to applicable
model.fit() methods.


















	
daily_trace_data(trace)

	Transforms a trace for this formatter to a daily series






	
get_input_data_mask(input_data)

	Boolean list of missing/not missing values:
True  => missing
False => not missing












eemeter.modeling.models


	
class eemeter.modeling.models.seasonal.SeasonalElasticNetCVModel(cooling_base_temp=65, heating_base_temp=65, n_bootstrap=100, modeling_period_interpretation='baseline')

	Linear regression using daily frequency data to build a model of
formatted energy trace data that takes into account HDD, CDD, day of week,
month, and holiday effects, with elastic net regularization.





	Parameters:	
	cooling_base_temp (float) – Base temperature (degrees F) used in calculating cooling degree days.

	heating_base_temp (float) – Base temperature (degrees F) used in calculating heating degree days.

	n_bootstrap (int) – Number of points to exclude during bootstrap error estimation.














	
class eemeter.modeling.models.billing.BillingElasticNetCVModel(cooling_base_temp=65, heating_base_temp=65, n_bootstrap=100, modeling_period_interpretation='baseline')

	Linear regression of energy values against CDD/HDD with elastic net
regularization.





	Parameters:	
	cooling_base_temp (float) – Base temperature (degrees F) used in calculating cooling degree days.

	heating_base_temp (float) – Base temperature (degrees F) used in calculating heating degree days.

	n_bootstrap (int) – Number of points to exclude during bootstrap error estimation.














	
class eemeter.modeling.models.caltrack.CaltrackMonthlyModel(fit_cdd=True, grid_search=False, min_contiguous_baseline_months=12, min_contiguous_reporting_months=12, modeling_period_interpretation='baseline', weighted=False)

	This class implements the two-stage modeling routine agreed upon
as part of the Caltrack beta test.

If fit_cdd is True, then all four candidate models (HDD+CDD,
CDD-only, HDD-only, and Intercept-only) are
used in stage 1 estimation. If it’s false, then only HDD-only and
Intercept-only are used.

If grid_search is set to True, the balance point temperatures are
determined by maximizing R^2 across the range 50-85 degF. Otherwise,
70 and 60 degF are used for cooling and heating, respectively.

Min_contiguous_months sets the number of contiguous months of data
required at the beginning of the reporting period/end of the baseline
period in order for the weather normalization to be valid.


	
billing_to_monthly_avg(trace_and_temp)

	Helper function to handle monthly billing or other irregular data.






	
daily_to_monthly_avg(df)

	Convert from daily usage and temperature to monthly
usage per day and average HDD/CDD.






	
predict(demand_fixture_data, params=None, summed=True)

	Predicts across index using fitted model params





	Parameters:	
	demand_fixture_data (pandas.DataFrame) – Formatted input data as returned by
CaltrackFormatter.create_demand_fixture()

	params (dict, default None) – Parameters found during model fit. If None, .fit() must be called
before this method can be used.



	X_design_matrix: patsy design matrix used in
formatting design matrix.

	formula: patsy formula used in creating design matrix.

	coefficients: ElasticNetCV coefficients.

	intercept: ElasticNetCV intercept.













	Returns:	output – Dataframe of energy values as given by the fitted model across the
index given in demand_fixture_data.




	Return type:	pandas.DataFrame



















          

      

      

    

  

    
      
          
            
  


eemeter.processors.dispatchers


	
eemeter.processors.dispatchers.get_energy_modeling_dispatches(modeling_period_set, trace_set)

	Dispatches a set of applicable models and formatters for each
pairing of modeling period sets and trace sets given.





	Parameters:	
	modeling_period_set (eemeter.structures.ModelingPeriodSet) – ModelingPeriod s to dispatch.

	trace_set (eemeter.structures.EnergyTraceSet) – EnergyTrace s to dispatch.
















eemeter.processors.interventions


	
eemeter.processors.interventions.get_modeling_period_set(interventions)

	Creates an applicable modeling period set given a list of
interventions.





	Parameters:	interventions (list of eemeter.structures.Intervention) – Interventions for which to build ModelingPeriodSet.












eemeter.processors.location


	
eemeter.processors.location.get_weather_normal_source(site)

	Finds most relevant WeatherSource given project site.





	Parameters:	site (eemeter.structures.ZIPCodeSite) – Site to match to weather source data.


	Returns:	weather_source – Closest data-validated weather source in the same climate zone as
project ZIP code, if available.


	Return type:	eemeter.weather.TMY3WeatherSource










	
eemeter.processors.location.get_weather_source(site)

	Finds most relevant WeatherSource given project site.





	Parameters:	site (eemeter.structures.ZIPCodeSite) – Site to match to weather source data.


	Returns:	weather_source – Closest data-validated weather source in the same climate zone as
project ZIP code, if available.


	Return type:	eemeter.weather.ISDWeatherSource













          

      

      

    

  

    
      
          
            
  


GSODWeatherSource


	
class eemeter.weather.GSODWeatherSource(station, cache_url=None)

	The GSODWeatherSource draws weather data from the NOAA
Global Summary of the Day FTP site. It stores fetched data locally by
default in a SQLite database at ~/eemeter/cache/weather_cache.db,
unless you use set the EEMETER_WEATHER_CACHE_URL environment variable to
another, SQLAlchemy compatible database URL:

Basic usage is as follows:

>>> from eemeter.weather import GSODWeatherSource
>>> ws = GSODWeatherSource("722880")  # or another 6-digit USAF station





This object can be used to fetch weather data as follows, using an daily
frequency time-zone aware pandas DatetimeIndex covering any stretch
of time.

>>> import pandas as pd
>>> import pytz
>>> index = pd.date_range('2015-01-01', periods=365,
...     freq='D', tz=pytz.UTC)
>>> ws.indexed_temperatures(index, "degF")
2015-01-01 00:00:00+00:00    43.6
2015-01-02 00:00:00+00:00    45.0
2015-01-03 00:00:00+00:00    47.3
                             ...
2015-12-29 00:00:00+00:00    48.0
2015-12-30 00:00:00+00:00    46.4
2015-12-31 00:00:00+00:00    47.6
Freq: D, dtype: float64






	
add_year(year, force_fetch=False)

	Adds temperature data to internal pandas timeseries


Note

This method is called automatically internally to keep data
updated in response to calls to .indexed_temperatures()







	Parameters:	
	year ({int, string}) – The year for which data should be fetched, e.g. “2010”.

	force_fetch (bool, default=False) – If True, forces the fetch; if False, checks to see
if locally available before actually fetching.














	
add_year_range(start_year, end_year, force_fetch=False)

	Adds temperature data to internal pandas timeseries across a
range of years.


Note

This method is called automatically internally to keep data
updated in response to calls to .indexed_temperatures()







	Parameters:	
	start_year ({int, string}) – The earliest year for which data should be fetched, e.g. “2010”.

	end_year ({int, string}) – The latest year for which data should be fetched, e.g. “2013”.

	force_fetch (bool, default=False) – If True, forces the fetch; if false, checks to see if year
has been added before actually fetching.














	
indexed_temperatures(index, unit, allow_mixed_frequency=False)

	Return average temperatures over the given index.





	Parameters:	
	index (pandas.DatetimeIndex) – Index over which to supply average temperatures.
The index should be given as either an hourly (‘H’) or
daily (‘D’) frequency.

	unit (str, {"degF", "degC"}) – Target temperature unit for returned temperature series.






	Returns:	temperatures – Average temperatures over series indexed by index.




	Return type:	pandas.Series with DatetimeIndex


















ISDWeatherSource


	
class eemeter.weather.ISDWeatherSource(station, cache_url=None)

	The ISDWeatherSource draws weather data from the NOAA
Integrated Surface Database (ISD) FTP site. It stores fetched hourly data
locally by default in a SQLite database at
~/eemeter/cache/weather_cache.db, unless you use set the following
environment variable to something different:

$ export EEMETER_WEATHER_CACHE_DIRECTORY=/path/to/custom/directory





Basic usage is as follows:

>>> from eemeter.weather import ISDWeatherSource
>>> ws = ISDWeatherSource("722880")  # or another 6-digit USAF station





This object can be used to fetch weather data as follows, using an hourly
or daily frequency time-zone aware pandas DatetimeIndex covering any
stretch of time.

>>> import pandas as pd
>>> import pytz
>>> daily_index = pd.date_range('2015-01-01', periods=365,
...     freq='D', tz=pytz.UTC)
>>> ws.indexed_temperatures(daily_index, "degF")
2015-01-01 00:00:00+00:00    43.550000
2015-01-02 00:00:00+00:00    45.042500
2015-01-03 00:00:00+00:00    47.307500
                               ...
2015-12-29 00:00:00+00:00    47.982500
2015-12-30 00:00:00+00:00    46.415000
2015-12-31 00:00:00+00:00    47.645000
Freq: D, dtype: float64
>>> hourly_index = pd.date_range('2015-01-01', periods=365*24,
...     freq='H', tz=pytz.UTC)
>>> ws.indexed_temperatures(hourly_index, "degF")
2015-01-01 00:00:00+00:00    51.98
2015-01-01 01:00:00+00:00    50.00
2015-01-01 02:00:00+00:00    48.02
                             ...
2015-12-31 21:00:00+00:00    62.06
2015-12-31 22:00:00+00:00    62.06
2015-12-31 23:00:00+00:00    62.06
Freq: H, dtype: float64






	
add_year(year, force_fetch=False)

	Adds temperature data to internal pandas timeseries


Note

This method is called automatically internally to keep data
updated in response to calls to .indexed_temperatures()







	Parameters:	
	year ({int, string}) – The year for which data should be fetched, e.g. “2010”.

	force_fetch (bool, default=False) – If True, forces the fetch; if False, checks to see
if locally available before actually fetching.














	
add_year_range(start_year, end_year, force_fetch=False)

	Adds temperature data to internal pandas timeseries across a
range of years.


Note

This method is called automatically internally to keep data
updated in response to calls to .indexed_temperatures()







	Parameters:	
	start_year ({int, string}) – The earliest year for which data should be fetched, e.g. “2010”.

	end_year ({int, string}) – The latest year for which data should be fetched, e.g. “2013”.

	force_fetch (bool, default=False) – If True, forces the fetch; if false, checks to see if year
has been added before actually fetching.














	
indexed_temperatures(index, unit, allow_mixed_frequency=False)

	Return average temperatures over the given index.





	Parameters:	
	index (pandas.DatetimeIndex) – Index over which to supply average temperatures.
The index should be given as either an hourly (‘H’) or
daily (‘D’) frequency.

	unit (str, {"degF", "degC"}) – Target temperature unit for returned temperature series.






	Returns:	temperatures – Average temperatures over series indexed by index.




	Return type:	pandas.Series with DatetimeIndex


















TMY3WeatherSource


	
class eemeter.weather.TMY3WeatherSource(station, cache_url=None, preload=True)

	The TMY3WeatherSource draws weather data from the NREL’s
Typical Meteorological Year 3 database. It stores fetched data locally by
default in a SQLite database at ~/.eemeter/cache/weather_cache.db,
unless you use set the EEMETER_WEATHER_CACHE_URL environment variable to
another, SQLAlchemy compatible database URL:

Basic usage is as follows:

>>> from eemeter.weather import TMY3WeatherSource
>>> ws = TMY3WeatherSource("724830")  # or another 6-digit USAF station





This object can be used to fetch weather data as follows, using an daily
frequency time-zone aware pandas DatetimeIndex covering any stretch
of time.

>>> import pandas as pd
>>> import pytz
>>> daily_index = pd.date_range('2015-01-01', periods=365,
...     freq='D', tz=pytz.UTC)
>>> ws.indexed_temperatures(daily_index, "degF")
2015-01-01 00:00:00+00:00    38.6450
2015-01-02 00:00:00+00:00    40.4900
2015-01-03 00:00:00+00:00    43.9175
                              ...
2015-12-29 00:00:00+00:00    43.7750
2015-12-30 00:00:00+00:00    43.6250
2015-12-31 00:00:00+00:00    46.9250
Freq: D, dtype: float64
>>> hourly_index = pd.date_range('2015-01-01', periods=365*24,
...     freq='H', tz=pytz.UTC)
>>> ws.indexed_temperatures(hourly_index, "degF")
2015-01-01 00:00:00+00:00    51.80
2015-01-01 01:00:00+00:00    50.00
2015-01-01 02:00:00+00:00    50.00
                             ...
2015-12-31 21:00:00+00:00    53.60
2015-12-31 22:00:00+00:00    55.40
2015-12-31 23:00:00+00:00    55.40
Freq: H, dtype: float64






	
indexed_temperatures(index, unit)

	Return average temperatures over the given index.





	Parameters:	
	index (pandas.DatetimeIndex) – Index over which to supply average temperatures.
The index should be given as either an hourly (‘H’) or
daily (‘D’) frequency.

	unit (str, {"degF", "degC"}) – Target temperature unit for returned temperature series.






	Returns:	temperatures – Average temperatures over series indexed by index.




	Return type:	pandas.Series with DatetimeIndex


















Location


	
eemeter.weather.location.climate_zone_is_supported(climate_zone)

	True if given Climate Zone is supported.





	Parameters:	climate_zone (str) – String representing a climate_zone.


	Returns:	supported – True if supported, otherwise False.


	Return type:	bool










	
eemeter.weather.location.climate_zone_to_tmy3_stations(climate_zone)

	Return TMY3 weather stations falling within in the given climate zone.





	Parameters:	climate_zone (str) – String representing a climate zone.


	Returns:	stations – Strings representing TMY3 station ids.


	Return type:	list of str










	
eemeter.weather.location.climate_zone_to_usaf_stations(climate_zone)

	Return USAF weather stations falling within in the given climate zone.





	Parameters:	climate_zone (str) – String representing a climate zone.


	Returns:	stations – Strings representing USAF station ids.


	Return type:	list of str










	
eemeter.weather.location.climate_zone_to_zipcodes(climate_zone)

	Return ZIP codes with centroids in the given climate zone.





	Parameters:	climate_zone (str) – String representing a climate zone.


	Returns:	zipcodes – Strings representing USPS ZIP codes.


	Return type:	list of str










	
eemeter.weather.location.haversine(lat1, lng1, lat2, lng2)

	Calculate the great circle distance between two points
on the earth (specified in decimal degrees)





	Parameters:	
	lat1 (float) – Latitude coordinate of first point.

	lng1 (float) – Longitude coordinate of first point.

	lat2 (float) – Latitude coordinate of second point.

	lng2 (float) – Longitude coordinate of second point.






	Returns:	distance – Kilometers between the two lat/lng coordinates.




	Return type:	float












	
eemeter.weather.location.lat_lng_to_climate_zone(lat, lng)

	Return the closest ZIP code using latitude and
longitude coordinates.





	Parameters:	
	lat (float) – Latitude coordinate.

	lng (float) – Longitude coordinate.






	Returns:	climate_zone – String representing a climate zone.




	Return type:	str, None












	
eemeter.weather.location.lat_lng_to_tmy3_station(lat, lng)

	Return the closest TMY3 station ID using latitude and
longitude coordinates.





	Parameters:	
	lat (float) – Latitude coordinate.

	lng (float) – Longitude coordinate.






	Returns:	station – String representing a TMY3 weather station ID or None, if none was
found.




	Return type:	str, None












	
eemeter.weather.location.lat_lng_to_usaf_station(lat, lng)

	Return the closest USAF station ID using latitude and
longitude coordinates.





	Parameters:	
	lat (float) – Latitude coordinate.

	lng (float) – Longitude coordinate.






	Returns:	station – String representing a USAF weather station ID or None, if none was
found.




	Return type:	str, None












	
eemeter.weather.location.lat_lng_to_zipcode(lat, lng)

	Return the closest ZIP code using latitude and
longitude coordinates.





	Parameters:	
	lat (float) – Latitude coordinate.

	lng (float) – Longitude coordinate.






	Returns:	zipcode – String representing a USPS ZIP code, or None, if none was found.




	Return type:	str, None












	
eemeter.weather.location.tmy3_station_is_supported(station)

	True if given TMY3 weather station is supported. USAF IDs.





	Parameters:	station (str) – 6-digit string representing a weather station.


	Returns:	supported – True if supported, otherwise False.


	Return type:	bool










	
eemeter.weather.location.tmy3_station_to_climate_zone(station)

	Return the climate zone of the station.





	Parameters:	station (str) – String representing a USAF Weather station ID


	Returns:	climate_zone – String representing a climate zone.


	Return type:	str










	
eemeter.weather.location.tmy3_station_to_lat_lng(station)

	Return the latitude and longitude coordinates of the given station.





	Parameters:	station (str) – String representing a TMY3 USAF Weather station ID


	Returns:	lat_lng – Latitude and longitude coordinates.


	Return type:	tuple of float










	
eemeter.weather.location.tmy3_station_to_zipcodes(station)

	Return the zipcodes that map to this station.





	Parameters:	station (str) – String representing a USAF Weather station ID


	Returns:	zipcode – String representing a USPS ZIP code.


	Return type:	list of str










	
eemeter.weather.location.usaf_station_is_supported(station)

	True if given USAF weather station is supported. USAF IDs.





	Parameters:	station (str) – 6-digit string representing a weather station.


	Returns:	supported – True if supported, otherwise False.


	Return type:	bool










	
eemeter.weather.location.usaf_station_to_climate_zone(station)

	Return the climate zone of the station.





	Parameters:	station (str) – String representing a USAF Weather station ID


	Returns:	climate_zone – String representing a climate zone


	Return type:	str










	
eemeter.weather.location.usaf_station_to_lat_lng(station)

	Return the latitude and longitude coordinates of the given USAF station.





	Parameters:	station (str) – String representing a USAF Weather station ID


	Returns:	lat_lng – Latitude and longitude coordinates.


	Return type:	tuple of float










	
eemeter.weather.location.usaf_station_to_zipcodes(station)

	Return the zipcodes that map to this USAF station.





	Parameters:	station (str) – String representing a USAF Weather station ID


	Returns:	zipcodes – Strings representing a USPS ZIP code mapped to from this station.


	Return type:	list of str










	
eemeter.weather.location.zipcode_is_supported(zipcode)

	True if given ZIP Code is supported. ZCTA only.





	Parameters:	zipcode (str) – 5-digit string representing a zipcode.


	Returns:	supported – True if supported, otherwise False.


	Return type:	bool










	
eemeter.weather.location.zipcode_to_climate_zone(zipcode)

	Return the climate zone of the ZIP code (by latitude and longitude
centroid of ZIP code).





	Parameters:	zipcode (str) – String representing a USPS ZIP code.


	Returns:	climate_zone – String representing a climate zone


	Return type:	str










	
eemeter.weather.location.zipcode_to_lat_lng(zipcode)

	Return the latitude and longitude centroid of a particular ZIP code.





	Parameters:	zipcode (str) – String representing a USPS ZIP code.


	Returns:	lat_lng – Latitude and longitude coordinates.


	Return type:	tuple of float










	
eemeter.weather.location.zipcode_to_tmy3_station(zipcode)

	Return the nearest TMY3 station (by latitude and longitude centroid) of
the ZIP code.





	Parameters:	zipcode (str) – String representing a USPS ZIP code.


	Returns:	station – String representing a TMY3 Weather station (USAF ID).


	Return type:	str










	
eemeter.weather.location.zipcode_to_usaf_station(zipcode)

	Return the nearest USAF station (by latitude and longitude centroid) of
the ZIP code.





	Parameters:	zipcode (str) – String representing a USPS ZIP code.


	Returns:	station – String representing a USAF weather station ID


	Return type:	str













          

      

      

    

  

    
      
          
            
  


Development



	Testing







	Building Documentation









          

      

      

    

  

    
      
          
            
  


Testing

This library uses the py.test framework. To develop locally, clone the repo,
and in a virtual environment execute the following commands:

$ git clone https://github.com/openeemeter/eemeter
$ cd eemeter
$ mkvirtualenv eemeter
$ pip install -r dev_requirements.txt
$ pip install -e .
$ tox









          

      

      

    

  

    
      
          
            
  


Building Documentation

Documentation is built using the sphinx package.
To build documentation, make sure that dev requirements are installed:

$ pip install -r dev_requirements.txt





You will also need to [install pandoc](http://pandoc.org/installing.html) to build docs locally.

And run the following from the root project directory.

$ make -C docs html





To clean the build directory, run the following:

$ make -C docs clean









          

      

      

    

  

    
      
          
            
  


datastore

The datastore is an application for housing energy and project data which
provides a REST API for loading data, computing energy savings, and
inspecting results. Like the eemeter library, the datastore is open source and
available on github [https://github.com/openeemeter/datastore]
under an MIT license.

The datastore uses the django web framework [https://djangoproject.com/]
with a PostgreSQL [https://www.postgresql.org/] database.



	Development Setup
	Clone the repo and change directories

	Install required python packages

	Define the necessary environment variables

	Run database migrations

	Seed the database

	Start a development server











	Topics
	Basic Usage: datastore application

	Setup

	Using the API to get loaded data

	Running meters

	Scheduling a single meter run

	Customizing meter runs

	Bulk-triggering meter runs
	Through the API

	Through a management command





	Meter result warehouse tables
	Using the warehouse_meterresultmart table





	Aggregations and groups
	Additional filter examples:





	Group statistics warehouse tables

	PostgreSQL tables
	Core project and trace data (i.e., data loaded through ETL)

	Meter run and meter result data

	Metering tables

	Warehouse tables





	Management commands
	dev_seed

	prod_seed

	trace_record_indexes

	run_meters

	meter_progress

	delete_meters

	run_aggregations

	meterresultmart

	modelresultmart

	projectsummarymart

	tracesummarymart

	geoinfo















	API









          

      

      

    

  

    
      
          
            
  


Development Setup


Clone the repo and change directories

git clone git@github.com:openeemeter/datastore.git
cd datastore








Install required python packages

We recommend using virtualenv (or virtualenvwrapper) to manage python packages

mkvirtualenv datastore
pip install -r requirements.txt
pip install -r dev-requirements.txt








Define the necessary environment variables

# django
export DJANGO_SETTINGS_MODULE=oeem_energy_datastore.settings
export SECRET_KEY=<django-secret-key>  # random string

# postgres
export DATABASE_URL=postgres://user:password@host:5432/dbname

# for API docs - should reflect the IP or DNS name where datastore will be deployed
export SERVER_NAME=0.0.0.0:8000
export PROTOCOL=http  # or https

# For development only
export DEBUG=true

# For celery background tasks
export CELERY_ALWAYS_EAGER=true

  or

export BROKER_TRANSPORT=redis
export BROKER_URL=redis://user:password@host:9549





If developing on the datastore, you might consider adding these to your
virtualenv postactivate script:

vim /path/to/virtualenvs/datastore/bin/postactivate

# Refresh environment
workon datastore








Run database migrations

python manage.py migrate








Seed the database

python manage.py dev_seed








Start a development server

python manage.py runserver











          

      

      

    

  

    
      
          
            
  


Topics



	Basic Usage: datastore application

	Setup

	Using the API to get loaded data

	Running meters

	Scheduling a single meter run

	Customizing meter runs

	Bulk-triggering meter runs
	Through the API

	Through a management command





	Meter result warehouse tables
	Using the warehouse_meterresultmart table





	Aggregations and groups
	Additional filter examples:





	Group statistics warehouse tables

	PostgreSQL tables
	Core project and trace data (i.e., data loaded through ETL)

	Meter run and meter result data

	Metering tables

	Warehouse tables





	Management commands
	dev_seed

	prod_seed

	trace_record_indexes

	run_meters

	meter_progress

	delete_meters

	run_aggregations

	meterresultmart

	modelresultmart

	projectsummarymart

	tracesummarymart

	geoinfo













          

      

      

    

  

    
      
          
            
  


Basic Usage: datastore application

The datastore is a tool for using the eemeter which automates
and helps to scale some of the most frequent tasks accomplished by the
eemeter. These tasks include data loading and storage, meter
running, result storage and warehousing. It puts a REST API
in front of the eemeter and uses a postgres backend.

This tutorial is also available as a jupyter notebook.


Note:

This tutorial assumes you have a working datastore instance. If you do
not, please follow the datastore development setup instructions or
contact Open EE to setting up a dedicated production deployment.




Note:

For small and large datasets, the ETL toolkit exists to ease and speed
up the process of loading your data.

This tutorial does not cover ETL toolkit usage. For more information on
the ETL toolkit, see its API documentation.






Setup



In [1]:






# library imports
import pandas as pd
import requests
import pytz







If you followed the datastore development setup instructions, you will
already have run the command to create a superuser and access
credentials.

python manage.py dev_seed





If you haven’t already done so, do so now. The dev_seed command
creates a demo admin user and a sample project.


	username: demo,

	password: demo-password,

	API access token: tokstr.



Ensure that your development server is running locally on port 8000
before continuing.

python manage.py runserver





Each request will include an Authorization header

Authorization: Bearer tokstr







In [2]:






base_url = "http://0.0.0.0:8000"
token = "tokstr"
headers = {"Authorization": "Bearer {}".format(token)}










Using the API to get loaded data

We can use the API to inspect the data that is loaded into the
datastore. (The API can also be used for loading data, but that is not
covered here. See the ETL tutorial for more information on loading
data.)


Note:

We will use the requests python package for making requests, but you
could just as easily use a tool like cURL or Postman.

If you have the eemeter package installed, you will also have the
requests package installed, but if not, you can install it with:




$ pip install requests





A request using the requests library looks like this:

import requests
url = "https://example.com"
data = {
    "first_name": "John",
    "last_name": "Doe"
}
requests.post(url + "/api/users/", json=data)





which is equivalent to:

POST /api/users/ HTTP/1.1
Host: example.com
{
    "first_name": "John",
    "last_name": "Doe"
}






Since the dev_seed command creates a sample project, this will return a
response showing that project. Projects all have a unique “project_id”,
which can be set to whatever is most appropriate (note: it is not used
as primary key; that’s the ‘id’ field).



In [3]:






url = base_url + "/api/v1/projects/"
projects = requests.get(url, headers=headers).json()









In [4]:






projects









Out[4]:






[{'baseline_period_end': '2012-01-01T00:00:00Z',
  'baseline_period_start': None,
  'id': 1,
  'project_id': 'DEV_SEED_PROJECT',
  'project_owner_id': 1,
  'reporting_period_end': None,
  'reporting_period_start': '2012-02-01T00:00:00Z',
  'zipcode': '91104'}]







Energy trace data will be associated with this project by foreign key
through a many-to-many table. This means that projects can have 0 to n
associated traces, and that traces can have 0 to n associated projects.

Like projects and the project_id field, traces are identified by a
unique ‘trace_id’ field, which can also be set to whatever is most
appropriate.

There are API endpoints used to fetch trace data:


	/api/v1/traces/: This stores trace ids, unit, and interpretation.

	/api/v1/trace_records/: This stores time-series records
associated with each trace.



These records are stored by record start timestamp, with the implicit
assumption that the start timestamp of the next temporal record is
the end of the current record. The value of the last record is ignored,
and serves as the final end timestamp (and is usually set to null).



In [5]:






url = base_url + "/api/v1/traces/?projects={}".format(projects[0]['id'])
traces = requests.get(url, headers=headers).json()









In [6]:






traces









Out[6]:






[{'id': 1,
  'interpretation': 'NATURAL_GAS_CONSUMPTION_SUPPLIED',
  'trace_id': 'DEV_SEED_TRACE_NATURAL_GAS_MONTHLY',
  'unit': 'THERM'},
 {'id': 2,
  'interpretation': 'NATURAL_GAS_CONSUMPTION_SUPPLIED',
  'trace_id': 'DEV_SEED_TRACE_NATURAL_GAS_DAILY',
  'unit': 'THERM'},
 {'id': 3,
  'interpretation': 'ELECTRICITY_CONSUMPTION_SUPPLIED',
  'trace_id': 'DEV_SEED_TRACE_ELECTRICITY_15MIN',
  'unit': 'KWH'},
 {'id': 4,
  'interpretation': 'ELECTRICITY_CONSUMPTION_SUPPLIED',
  'trace_id': 'DEV_SEED_TRACE_ELECTRICITY_HOURLY',
  'unit': 'KWH'},
 {'id': 5,
  'interpretation': 'ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED',
  'trace_id': 'DEV_SEED_TRACE_SOLAR_HOURLY',
  'unit': 'KWH'},
 {'id': 6,
  'interpretation': 'ELECTRICITY_ON_SITE_GENERATION_UNCONSUMED',
  'trace_id': 'DEV_SEED_TRACE_SOLAR_30MIN',
  'unit': 'KWH'}]







We can also query for trace records by trace primary key.



In [7]:






url = base_url + "/api/v1/trace_records/?trace={}".format(traces[0]['id'])
trace_records = requests.get(url, headers=headers).json()









In [8]:






trace_records[:3]  # first 3 records









Out[8]:






[{'estimated': False,
  'id': 1,
  'start': '2010-01-01T00:00:00Z',
  'trace_id': 1,
  'value': None},
 {'estimated': False,
  'id': 2,
  'start': '2010-02-01T00:00:00Z',
  'trace_id': 1,
  'value': 1.0},
 {'estimated': False,
  'id': 3,
  'start': '2010-03-01T00:00:00Z',
  'trace_id': 1,
  'value': 1.0}]










Running meters

Running a meter means pulling trace data, matching it with relevant
project data, and evaluating its energy effiency performance. This is
the central task performed by the datastore, so if the specifics are
unfamiliar, there is a bit more background information worthy of review
in the Methods Overview section of the guides.

To run a meter, make a request to create a “meter run”. This request
will start a job that runs a meter and saves its results. The result of
a meter run is called a “meter result”.



In [9]:






from collections import OrderedDict
import json










Scheduling a single meter run

The primary component of this request is a trace primary key.

The project data associated with the trace will be automatically pulled
in to be associated with the trace.



In [10]:






created_meter_run = requests.post(
    base_url + "/api/v1/meter_runs/",
    json={
        "trace": traces[0]['id']  # single trace primary key
    },
    headers=headers
).json(object_pairs_hook=OrderedDict)  # retains order of keys









In [11]:






print(json.dumps(created_meter_run, indent=2))













{
  "id": 1,
  "trace": 1,
  "project": 1,
  "meter_result": 1,
  "meter_input": null,
  "status": "PENDING",
  "failure_message": null,
  "traceback": null,
  "model_class": null,
  "model_kwargs": null,
  "formatter_class": null,
  "formatter_kwargs": null,
  "added": "2016-11-18T02:16:36.078334Z",
  "updated": "2016-11-18T02:16:36.078375Z"
}






This is a summary of the task to run the meter on the indicated project.

The response shows us the complete specification of the meter run
behavior, which is as follows:


	project: the project primary key (determined implicitly from the
trace).

	trace: the trace primary key (given in API request).

	status: the task status code (in this case "PENDING"), other
options are:




	"PENDING": which means the tasks is scheduled but not yet running
or completed.

	"RUNNING": task is currently running.

	"SUCCESS": successful completion.

	"FAILED": failed due to some sort of error.




	meter_result: the primary key of the meter result.

	meter_input: has not yet been created (this is the complete
serialized input to the meter, as required by the eemeter.)

	model_class and model_kwargs: The model class and arguments
used in meter fitting.




	If these are left blank, default values will be used.




	formatter_class and formatter_kwargs: The formatter class and
arguments used in meter fitting.




	If these are left blank, default values will be used.



If you wish, you can also specify many of these properties explicitly
and we will do so in a following section.

Let’s make another call to inspect the state of this meter run



In [12]:






meter_run = requests.get(
    base_url + "/api/v1/meter_runs/{}/".format(created_meter_run['id']),
    headers=headers
).json(object_pairs_hook=OrderedDict)









In [13]:






print(json.dumps(meter_run, indent=2))













{
  "id": 1,
  "trace": 1,
  "project": 1,
  "meter_result": 1,
  "meter_input": "https://storage.googleapis.com/my-storage-bucket/datastore/meter_run_inputs/5fa24b58-444b-4c72-a8c9-bb0327b23118.json",
  "status": "SUCCESS",
  "failure_message": null,
  "traceback": null,
  "model_class": null,
  "model_kwargs": null,
  "formatter_class": null,
  "formatter_kwargs": null,
  "added": "2016-11-18T02:16:36.078334Z",
  "updated": "2016-11-18T02:17:44.356211Z"
}






The associated meter result is also available now and carries a set of
outputs that include the meter run value and additionally:


	meter_output: serialized output of the meter run.

	eemeter_version and datastore_version: software version of
eemeter library and datastore application





In [14]:






meter_result = requests.get(
    base_url + "/api/v1/meter_results/{}/".format(created_meter_run['meter_result']),
    headers=headers
).json(object_pairs_hook=OrderedDict)









In [15]:






print(json.dumps(meter_result, indent=2))













{
  "id": 1,
  "trace": 1,
  "project": 1,
  "meter_run": 1,
  "meter_output": "https://storage.googleapis.com/my-storage-bucket/datastore/meter_run_outputs/e1896b44-0b89-49ac-93e1-8eb6e44987bd.json",
  "status": "SUCCESS",
  "eemeter_version": "0.4.12",
  "datastore_version": "0.2.3",
  "model_class": "BillingElasticNetCVModel",
  "model_kwargs": {
    "heating_base_temp": 65,
    "cooling_base_temp": 65
  },
  "formatter_class": "ModelDataBillingFormatter",
  "formatter_kwargs": {},
  "added": "2016-11-18T02:17:44.203325Z",
  "updated": "2016-11-18T02:17:44.223200Z"
}









Customizing meter runs

Meter runs can also be customized by specifying various attributes
explicitly, such as custom arguments for the model class.



In [16]:






custom_meter_run = requests.post(
    base_url + "/api/v1/meter_runs/",
    json={
        "trace": 2,
        "project": 1,
        "model_kwargs": {
            "heating_base_temp": 64,  # different temperature
            "cooling_base_temp": 64,
        },
    },
    headers=headers
).json(object_pairs_hook=OrderedDict)









In [17]:






print(json.dumps(custom_meter_run, indent=2))













{
  "id": 2,
  "trace": 2,
  "project": 1,
  "meter_result": 2,
  "meter_input": null,
  "status": "PENDING",
  "failure_message": null,
  "traceback": null,
  "model_class": null,
  "model_kwargs": {
    "heating_base_temp": 64,
    "cooling_base_temp": 64
  },
  "formatter_class": null,
  "formatter_kwargs": null,
  "added": "2016-11-18T02:17:44.681341Z",
  "updated": "2016-11-18T02:17:44.681374Z"
}






Or, if you leave out the project and trace attributes, you can specify
the exact serialized input. This means that if serialized meter inputs
are available, you need not explicitly load traces and projects through
ETL.

Please download a preformatted input file
for this step.



In [18]:






with open('meter_input_example.json', 'r') as f:
    meter_input = f.read()  # loaded as a serialized string
    meter_input_meter_run = requests.post(
        base_url + "/api/v1/meter_runs/",
        json={
            "meter_input": meter_input,
        },
        headers=headers
    ).json(object_pairs_hook=OrderedDict)









In [19]:






print(json.dumps(meter_input_meter_run, indent=2))













{
  "id": 3,
  "trace": null,
  "project": null,
  "meter_result": 3,
  "meter_input": "https://storage.googleapis.com/my-storage-bucket/datastore/meter_run_inputs/bf0629db-0c81-4ded-8dcc-adbd0ddbf3f3.json",
  "status": "PENDING",
  "failure_message": null,
  "traceback": null,
  "model_class": null,
  "model_kwargs": null,
  "formatter_class": null,
  "formatter_kwargs": null,
  "added": "2016-11-18T02:19:23.155268Z",
  "updated": "2016-11-18T02:19:23.155857Z"
}








In [20]:






meter_run = requests.get(
    base_url + "/api/v1/meter_runs/{}/".format(meter_input_meter_run['id']),
    headers=headers
).json(object_pairs_hook=OrderedDict)
print(json.dumps(meter_run, indent=2))













{
  "id": 3,
  "trace": null,
  "project": null,
  "meter_result": 3,
  "meter_input": "https://storage.googleapis.com/my-storage-bucket/datastore/meter_run_inputs/bf0629db-0c81-4ded-8dcc-adbd0ddbf3f3.json",
  "status": "SUCCESS",
  "failure_message": null,
  "traceback": null,
  "model_class": null,
  "model_kwargs": null,
  "formatter_class": null,
  "formatter_kwargs": null,
  "added": "2016-11-18T02:19:23.155268Z",
  "updated": "2016-11-18T02:22:13.679220Z"
}








In [21]:






meter_result = requests.get(
    base_url + "/api/v1/meter_results/{}/".format(meter_input_meter_run['meter_result']),
    headers=headers
).json(object_pairs_hook=OrderedDict)
print(json.dumps(meter_result, indent=2))













{
  "id": 3,
  "trace": null,
  "project": null,
  "meter_run": 3,
  "meter_output": "https://storage.googleapis.com/my-storage-bucket/datastore/meter_run_outputs/7ab2bd31-a723-4c75-afa6-424d560ab284.json",
  "status": "SUCCESS",
  "eemeter_version": "0.4.12",
  "datastore_version": "0.2.3",
  "model_class": "SeasonalElasticNetCVModel",
  "model_kwargs": {
    "heating_base_temp": 65,
    "cooling_base_temp": 65
  },
  "formatter_class": "ModelDataFormatter",
  "formatter_kwargs": {
    "freq_str": "D"
  },
  "added": "2016-11-18T02:22:13.566866Z",
  "updated": "2016-11-18T02:22:13.583138Z"
}






Meters can also be triggered in bulk; the next section covers this.




Bulk-triggering meter runs

Often it is more convenient to trigger many meter runs at once than to
do it trace-by-trace. This can be done either through the API or through
a datastore management command.


Through the API

The following sends a list of “targets” to the datastore for triggering.
Here, we’re triggering a set of meter runs for one project, which will
trigger meter runs for all associated traces.


Warning:

The following may take a few minutes to complete. If you have enabled
celery workers, it will execute more quickly and computation will
continue in the background. If this is the case for you, you should wait
until that computation has completed before continuing.

For more information on background worker setup, see datastore setup
instructions.



To follow progress, watch the datastore logs or use the
meter_progress command. In a development environment, these are
printed in the python manage.py runserver output.



In [22]:






bulk_created_meter_runs = requests.post(
    base_url + "/api/v1/meter_runs/bulk/",  # note: different url!
    json={
        "targets": [  # a list of targets can be provided
            {
                "project": projects[0]['id']
            },
        ]
    },
    headers=headers
).json(object_pairs_hook=OrderedDict)









In [23]:






print(json.dumps(bulk_created_meter_runs, indent=2))













[
  [
    {
      "id": 4,
      "trace": 3,
      "project": 1,
      "meter_result": 4,
      "meter_input": null,
      "status": "PENDING",
      "failure_message": null,
      "traceback": null,
      "model_class": null,
      "model_kwargs": null,
      "formatter_class": null,
      "formatter_kwargs": null,
      "added": "2016-11-18T02:22:14.088620Z",
      "updated": "2016-11-18T02:22:14.088658Z"
    },
    {
      "id": 5,
      "trace": 4,
      "project": 1,
      "meter_result": 5,
      "meter_input": null,
      "status": "PENDING",
      "failure_message": null,
      "traceback": null,
      "model_class": null,
      "model_kwargs": null,
      "formatter_class": null,
      "formatter_kwargs": null,
      "added": "2016-11-18T02:26:15.683349Z",
      "updated": "2016-11-18T02:26:15.683442Z"
    },
    {
      "id": 6,
      "trace": 5,
      "project": 1,
      "meter_result": 6,
      "meter_input": null,
      "status": "PENDING",
      "failure_message": null,
      "traceback": null,
      "model_class": null,
      "model_kwargs": null,
      "formatter_class": null,
      "formatter_kwargs": null,
      "added": "2016-11-18T02:28:00.757629Z",
      "updated": "2016-11-18T02:28:00.757666Z"
    },
    {
      "id": 7,
      "trace": 6,
      "project": 1,
      "meter_result": 7,
      "meter_input": null,
      "status": "PENDING",
      "failure_message": null,
      "traceback": null,
      "model_class": null,
      "model_kwargs": null,
      "formatter_class": null,
      "formatter_kwargs": null,
      "added": "2016-11-18T02:29:09.066736Z",
      "updated": "2016-11-18T02:29:09.066777Z"
    },
    {
      "id": 8,
      "trace": 1,
      "project": 1,
      "meter_result": 8,
      "meter_input": null,
      "status": "PENDING",
      "failure_message": null,
      "traceback": null,
      "model_class": null,
      "model_kwargs": null,
      "formatter_class": null,
      "formatter_kwargs": null,
      "added": "2016-11-18T02:32:05.062196Z",
      "updated": "2016-11-18T02:32:05.062238Z"
    },
    {
      "id": 9,
      "trace": 2,
      "project": 1,
      "meter_result": 9,
      "meter_input": null,
      "status": "PENDING",
      "failure_message": null,
      "traceback": null,
      "model_class": null,
      "model_kwargs": null,
      "formatter_class": null,
      "formatter_kwargs": null,
      "added": "2016-11-18T02:32:30.471808Z",
      "updated": "2016-11-18T02:32:30.471864Z"
    }
  ]
]






Note that results are returned grouped by target (as a list).

If model or formatter class or kwarg arguments are supplied, they will
be applied to all meter_runs.




Through a management command

The other way to bulk-trigger meter runs is through a management
command.

python manage.py run_meters --all-traces





You can monitor the progress of these commands with:

python manage.py meter_progress --all-meters --poll-until-complete










Meter result warehouse tables

For easy access to summarized meter result data, it may be helpful to
use the meter result “mart”, which is part of the data warehouse that
can be created in the postgres database.

Data warehouse tables make it easier to query into results by
summarizing the most relevant information.

To create warehouse tables, use the following management command:

$ python manage.py meterresultmart recreate





This is equivalent to running

$ python manage.py meterresultmart destroy
$ python manage.py meterresultmart create





Running the create command without first destroying will give
duplicate rows.


Using the warehouse_meterresultmart table

The easiest way to access the results of the warehouse is to connect an
analytics service which can read from the database directly.

If that is not available to you, you can also query directly with
postgres. Assuming you have a database set up called “datastore” (yours
may be named differently, depending on how you set it up), you can
connect as follows:

$ psql datastore
psql (9.4.1)
Type "help" for help.

datastore=# SELECT
  trace_id
  , differential_lower_bound as savings_lower_bound
  , differential_value as savings
  , differential_upper_bound as savings_upper_bound
FROM
  warehouse_meterresultmart
WHERE
  project_id='DEV_SEED_PROJECT'
AND
  derivative_interpretation='gross_predicted'
ORDER BY
  project_id
  , trace_id
  , derivative_interpretation;

              trace_id              | savings_lower_bound |      savings      | savings_upper_bound
------------------------------------+---------------------+-------------------+---------------------
 DEV_SEED_TRACE_ELECTRICITY_15MIN   |    2.21781163934072 |  4.93938974304001 |     7.6609678467393
 DEV_SEED_TRACE_ELECTRICITY_HOURLY  |      10.47300113325 |  12.9734969290002 |    15.4739927247505
 DEV_SEED_TRACE_NATURAL_GAS_DAILY   |   -12.4594891213768 | -6.03261538803008 |   0.394258345316612
 DEV_SEED_TRACE_NATURAL_GAS_MONTHLY |   -774.348987437802 | -580.576019960851 |     -386.8030524839
 DEV_SEED_TRACE_SOLAR_30MIN         |   0.848394785466816 |  3.81981394853938 |    6.79123311161194
 DEV_SEED_TRACE_SOLAR_HOURLY        |                     |                   |
(6 rows)
datastore=#










Aggregations and groups

Traces can be aggregated by putting them into groups and triggering
aggregation runs.

Groups must be named, and are defined by combinations of filters over
project_id, trace_id, or arbitary project metadata.

Filters are created with the following attributes as either a “filter”
or a “filter_boolean”, which is combination of two filters.

Filter types:

"filter":


	"target", can be:
	“project_id”

	“trace_id”

	“project_metadata|NAME_OF_ATTRIBUTE”





	"comparison", can be:
	“>”, “>=”, “<”, “<=”, “==”, ”!=”

	“in”, “not in”





	"value", can be:
	int, float, str (for comparisons “>”, “>=”, “<”, “<=”, “==”, ”!=”)

	list of values (for comparisons “in”, “not in”)







"filter_boolean":


	"boolean", can be:
	“and”, “or”





	"filter_a", can be:
	filter, filter_boolean





	"filter_b", can be:
	filter, filter_boolean







Example filter specification creation:



In [24]:






filter_specification = {
    "filter": {
        "target": "project_id",
        "comparison": "==",
        "value": projects[0]["project_id"],
    }
}









In [25]:






trace_group = requests.post(
    base_url + "/api/v1/trace_groups/",  # note: different url!
    json={
        "name": "project_group",
        "filter_specification": filter_specification,
    },
    headers=headers
).json(object_pairs_hook=OrderedDict)









In [26]:






print(json.dumps(trace_group, indent=2))













{
  "id": 3,
  "name": "project_group",
  "filter_specification": {
    "filter": {
      "comparison": "==",
      "target": "project_id",
      "value": "DEV_SEED_PROJECT"
    }
  }
}








In [27]:






aggregation_run = requests.post(
    base_url + "/api/v1/aggregation_runs/",
    json={
        "group": trace_group['id'],
        "trace_interpretation": "ELECTRICITY_CONSUMPTION_SUPPLIED",
        "derivative_interpretation": "annualized_weather_normal",
    },
    headers=headers
).json(object_pairs_hook=OrderedDict)









In [28]:






print(json.dumps(aggregation_run, indent=2))













{
  "id": 7,
  "group": 3,
  "aggregation_result": 1,
  "aggregation_input": null,
  "status": "PENDING",
  "traceback": null,
  "failure_message": null,
  "trace_interpretation": "ELECTRICITY_CONSUMPTION_SUPPLIED",
  "derivative_interpretation": "annualized_weather_normal",
  "aggregation_interpretation": "SUM",
  "added": "2016-11-18T03:04:00.425945Z",
  "updated": "2016-11-18T03:04:00.426601Z"
}








In [29]:






aggregation_run = requests.get(
    base_url + "/api/v1/aggregation_runs/{}/".format(aggregation_run["id"]),
    headers=headers
).json(object_pairs_hook=OrderedDict)
print(json.dumps(aggregation_run, indent=2))













{
  "id": 7,
  "group": 3,
  "aggregation_result": 1,
  "aggregation_input": "https://storage.googleapis.com/my-storage-bucket/datastore/aggregation_inputs/2b986708-1076-4a16-a2dd-31a78f93d817.json",
  "status": "SUCCESS",
  "traceback": null,
  "failure_message": null,
  "trace_interpretation": "ELECTRICITY_CONSUMPTION_SUPPLIED",
  "derivative_interpretation": "annualized_weather_normal",
  "aggregation_interpretation": "SUM",
  "added": "2016-11-18T03:04:00.425945Z",
  "updated": "2016-11-18T03:04:03.806500Z"
}








In [30]:






aggregation_result = requests.get(
    base_url + "/api/v1/aggregation_results/{}/".format(aggregation_run["aggregation_result"]),
    headers=headers
).json(object_pairs_hook=OrderedDict)
print(json.dumps(aggregation_result, indent=2))













{
  "id": 1,
  "aggregation_run": 7,
  "trace_interpretation": "ELECTRICITY_CONSUMPTION_SUPPLIED",
  "derivative_interpretation": "annualized_weather_normal",
  "aggregation_interpretation": "SUM",
  "aggregation_output": "https://storage.googleapis.com/my-storage-bucket/datastore/aggregation_outputs/4295fd00-4ecd-494e-9eeb-884ef620ce14.json",
  "derivatives": [
    7,
    9
  ],
  "unit": "KWH",
  "baseline_value": 4863.15574521486,
  "baseline_lower": 1.5110421742195,
  "baseline_upper": 1.5110421742195,
  "baseline_n": 730.0,
  "reporting_value": 4860.88336194519,
  "reporting_lower": 0.545198012058528,
  "reporting_upper": 0.545198012058528,
  "reporting_n": 730.0,
  "differential_direction": "BASELINE_MINUS_REPORTING",
  "differential_value": 2.27238326967017,
  "differential_lower": 1.60639015330105,
  "differential_upper": 1.60639015330105,
  "differential_n": 1460.0,
  "eemeter_version": "0.4.12",
  "datastore_version": "0.2.3",
  "added": "2016-11-18T03:04:03.701863Z",
  "updated": "2016-11-18T03:04:03.701911Z"
}







Additional filter examples:

All traces:

None  # leave blank





Traces with project cost less than or equal to 10000:

{
    "filter": {
        "target": "project_metadata|project_cost",
        "comparison": "<=",
        "value": 10000,
    }
}





Traces with project_id in particular set:

{
    "filter": {
        "target": "project_id",
        "comparison": "in",
        "value": [
            "PROJECT_101",
            "PROJECT_102"
        ]
    }
}





Traces with project_id in particular set or with project cost greater
than or equal to 5000:

{
    "filter_boolean": {
        "boolean": "or",
        "filter_a": {
            "filter": {
                "target": "project_id",
                "comparison": "in",
                "value": [
                    "PROJECT_101",
                    "PROJECT_102"
                ]
            }
        },
        "filter_b": {
            "filter": {
                "target": "project_metadata|project_cost",
                "comparison": ">=",
                "value": 5000,
            }
        }
    }
}





Deeply nested filter:

{
    "filter_boolean": {
        "boolean": "and",
        "filter_a": {
            "filter_boolean": {
                "boolean": "and",
                "filter_a": {
                    "filter": {
                        "target": "project_metadata|contractor",
                        "comparison": "==",
                        "value": "AAA CONTRACTING",
                    }
                },
                "filter_b": {
                    "filter": {
                        "target": "project_metadata|project_type",
                        "comparison": "!=",
                        "value": "SOLAR"
                    }
                },
            }
        },
        "filter_b": {
            "filter": {
                "target": "project_metadata|project_cost",
                "comparison": ">=",
                "value": 5000,
            }
        }
    }
}










Group statistics warehouse tables

For easy access to summarized aggregated data, it may be helpful to use
the group statistics mart, which is part of the data warehouse that can
be created in the postgres database.

This supplements the meter result mart by providing summarized group
statistics.

Just as with the meter result mart, the group statistics mart can also
be created with a management command:

$ python manage.py groupstatisticsmart recreate









          

      

      

    

  

    
      
          
            
  


PostgreSQL tables

A data dictionary describing available datastore database tables.


Core project and trace data (i.e., data loaded through ETL)








	Name of Table
	Name of Row
	Description of Row




	datastore_project
	 
	 


	 
	id
	Primary key


	 
	project_id
	Unique project identifier provided by the user


	 
	baseline_period_start
	[null]


	 
	baseline_period_end
	Populated through ETL from project data


	 
	reporting_period_start
	Populated through ETL from project data


	 
	reporting_period_end
	[null]


	 
	zipcode
	Populated through ETL from project data


	 
	project_owner_id
	Optional foreign key to datastore_projectowner table


	 
	added
	Date Added


	 
	updated
	Date updated


	datastore_trace
	 
	Refers to an energy trace (a time series of data from a meter)


	 
	id
	Primary key


	 
	trace_id
	Unique identifier for trace


	 
	interpretation
	Type of energy data.


	 
	unit
	Unit of measure


	 
	added
	Date that the data was added to the database


	 
	updated
	Timestamp for last updated


	datastore_tracerecord
	 
	Single point in trace timeseries


	 
	id
	Primary key


	 
	trace_id
	Foreign key to datastore_trace table


	 
	value
	Value from start of this record to start of the next record


	 
	estimated
	True/False


	 
	start
	Start time of interval; end is given by next record (as ordered by start timestamp).


	datastore_project_traces
	 
	Many-to-many table linking projects and traces


	 
	project_id
	Foriegn key to datastore_project table


	 
	trace_id
	Foriegn key to datastore_trace table


	datastore_projectmetadata
	 
	Project metadata


	 
	project_id
	Foriegn key to datastore_project table


	 
	key
	String identifying metadata type


	 
	value
	Value of metadata


	datastore_tracegroup
	 
	Grouping of traces defined by a filter


	 
	name
	Name of group


	 
	filter_specification
	JSON specification of filter defining group








Meter run and meter result data

Metering tables








	Name of Table
	Name of Row
	Description of Row




	metering_meterderivative
	 
	Table of predictive and descriptive summaries of savings


	 
	id
	Primary key


	 
	interpretation
	Interpretation of derivative (e.g., gross_predicted/annualized_weather_normal)


	 
	unit
	Unit of values, upper and lower bounds.


	 
	baseline_value
	Modeled counterfactual baseline value


	 
	baseline_lower
	Amount to be subtracted from baseline_value to obtain lower bound on 95% confidence interval


	 
	baseline_upper
	Amount to be added to baseline_value to obtain upper bound on 95% confidence interval


	 
	baseline_n
	Number of points in baseline demand fixture


	 
	reporting_value
	Modeled reporting period value


	 
	reporting_lower
	Amount to be subtracted from reporting_value to obtain lower bound on 95% confidence interval


	 
	reporting_upper
	Amount to be added to reporting_value to obtain upper bound on 95% confidence interval


	 
	reporting_n
	Number of points in reporting demand fixture


	 
	added
	Date added


	 
	updated
	Date updated


	 
	meter_result_id
	Primary key of meter result this derivative was extracted from


	 
	modeling_period_group_id
	Primary key of modeling period group describing baseline and reporting period details


	 
	trace_id
	Primary key of trace this derivative applies to


	metering_meterresult
	 
	Table of meter run results


	 
	id
	Primary key


	 
	meter_output
	Filename of JSON serialization of meter output


	 
	status
	SUCCESS/FAILURE


	 
	eemeter_version
	Version of eemeter library used to calculate this result


	 
	datastore_version
	Version of datastore application used to calculate this result


	 
	model_class
	Name of model class


	 
	model_kwargs
	Keyword arguments to model class


	 
	formatter_class
	Name of formatter class


	 
	formatter_kwargs
	Keyword arguments to formatter class


	 
	added
	Date added


	 
	updated
	Date updated


	 
	meter_run_id
	Primary key of meter run


	 
	project_id
	Primary key of project data


	 
	trace_id
	Primary key of trace


	metering_meterrun
	 
	Table of meter runs


	 
	id
	Primary key


	 
	meter_input
	Filename of JSON serialiation


	 
	status
	PENDING/RUNNING/SUCCESS/FAILURE


	 
	failure_message
	Failure message, if any


	 
	traceback
	Traceback text, if error occured


	 
	model_class
	Name of model class supplied, if any


	 
	model_kwargs
	Model class keyword arguments supplied, if any


	 
	formatter_class
	Name of formatter class supplied, if any


	 
	formatter_kwargs
	Formatter class keyword arguments supplied, if any


	 
	added
	Date added


	 
	updated
	Date updated


	 
	project_id
	Primary key of project data


	 
	trace_id
	Primary key of trace


	metering_modelingperiod
	 
	Table describing a modeling period


	 
	id
	Primary key


	 
	label
	Label to distinguish from other baseine/reporting/periods in same meter result


	 
	interpretation
	BASELINE/REPORTING


	 
	start
	Date of modeling period start, if any (can be blank for baseline)


	 
	end
	Date of modeling period end, if any (can be blank for reporting)


	 
	meter_result_id
	Primary key of containing meter result


	metering_modelingperiodgroup
	 
	Table describing a pair of modeling periods (baseline + reporting)


	 
	id
	Primary key


	 
	baseline_id
	Primary key of baseline modeling period


	 
	meter_result_id
	Primary key of containing meter result


	 
	reporting_id
	Primary key of reporting modeling period


	metering_modelresult
	 
	Table storing results from modeling


	 
	id
	Primary key


	 
	status
	SUCCESS/FAILURE


	 
	traceback
	Traceback, if any


	 
	start_date
	Start date of data used in modeling


	 
	end_date
	End date of data used in modeling


	 
	n_rows
	number of rows supplied as input to modeling


	 
	r2
	R-squared model fit


	 
	cvrmse
	Coefficient of variation of root mean squared error (rmse normalized by mean)


	 
	rmse
	root mean squared error


	 
	lower
	Value to be subtracted from any individual predicted point to obtain lower bound on 95% confidence interval


	 
	upper
	Value to be added to aby individual predicted point to obtain upper bound on 95% confidence interval


	 
	added
	Date added


	 
	updated
	Date updated


	 
	meter_result_id
	Primary key of meter result


	 
	modeling_period_id
	Primary key of modeling period


	 
	trace_id
	Primary key of trace








Metering tables








	Name of Table
	Name of Row
	Description of Row




	metering_aggregationrun
	 
	Aggregation task


	 
	id
	Primary key


	 
	aggregation_input
	Serialized aggregation input


	 
	status
	PENDING/RUNNING/SUCCESS/FAILURE


	 
	failure_message
	Failure message, if any


	 
	traceback
	Traceback text, if error occured


	 
	trace_interpretation
	Type of trace in this aggregation


	 
	derivative_interpretation
	Type of derivative in this aggregation


	 
	aggregation_interpretation
	Type of aggregation to be performed


	 
	group_id
	Foreign key to datastore_tracegroup table


	 
	added
	Date added


	 
	updated
	Date updated


	metering_aggregationresult
	 
	Aggregation task result


	 
	id
	Primary key


	 
	aggregation_input
	Serialized aggregation output


	 
	trace_interpretation
	Type of trace in this aggregation


	 
	derivative_interpretation
	Type of derivative in this aggregation


	 
	aggregation_interpretation
	Type of aggregation to be performed


	 
	eemeter_version
	Version of eemeter library used to calculate this result


	 
	datastore_version
	Version of datastore application used to calculate this result


	 
	unit
	Unit of measure


	 
	baseline_value
	Modeled counterfactual baseline value


	 
	baseline_lower
	Amount to be subtracted from baseline_value to obtain lower bound on 95% confidence interval


	 
	baseline_upper
	Amount to be added to baseline_value to obtain upper bound on 95% confidence interval


	 
	baseline_n
	Number of points in combined baseline demand fixtures


	 
	reporting_value
	Modeled counterfactual reporting value


	 
	reporting_lower
	Amount to be subtracted from reporting_value to obtain lower bound on 95% confidence interval


	 
	reporting_upper
	Amount to be added to reporting_value to obtain upper bound on 95% confidence interval


	 
	reporting_n
	Number of points in combined reporting demand fixtures


	 
	differential_direction
	BASELINE_MINUS_REPORTING/REPORTING_MINUS_BASELINE


	 
	differential_value
	Modeled counterfactual differential value


	 
	differential_lower
	Amount to be subtracted from differential_value to obtain lower bound on 95% confidence interval


	 
	differential_upper
	Amount to be added to differential_value to obtain upper bound on 95% confidence interval


	 
	differential_n
	Number of points in combined differential demand fixture


	 
	added
	Date added


	 
	updated
	Date updated


	 
	aggregation_run_id
	Foreign key to metering_aggregationrun table


	metering_aggregationderivativestatus
	 
	Status of inclusion in aggregation


	 
	id
	Primary key


	 
	status
	ACCEPTED/REJECTED


	 
	baseline_status
	Baseline result ACCEPTED or REJECTED


	 
	reporting_status
	Reporting result ACCEPTED or REJECTED


	 
	aggregation_result_id
	Foreign key to metering_aggregationresult table


	 
	derivative_id
	Foreign key to metering_meterderivative table








Warehouse tables








	Name of Table
	Name of Row
	Description of Row




	warehouse_meterresultmart
	 
	Summarized meter results


	 
	id
	Primary key


	 
	trace_id
	Trace identifing string


	 
	trace_pk
	Primary key of trace


	 
	trace_interpretation
	Type of trace


	 
	trace_unit
	Unit of measure of trace


	 
	project_id
	Project identifying string


	 
	project_pk
	Primary key of project


	 
	serialized_input_url
	Cloud storage location of serialized input


	 
	serialized_output_url
	Cloud storage location of serialized output


	 
	meter_result_pk
	Primary key of meter result


	 
	meter_result_status
	Meter result status


	 
	meter_result_eemeter_version
	eemeter library software version


	 
	meter_result_datastore_version
	datastore library software version


	 
	meter_result_model_class
	Model class used in model fitting


	 
	meter_result_model_kwargs
	Keyword arguments used in model class initialization


	 
	meter_result_formatter_class
	Formatter class used in model data formatting


	 
	meter_result_formatter_kwargs
	Keyword arguments used in formatter class initialization


	 
	meter_result_added
	Date meter result added


	 
	meter_result_updated
	Date meter result updated


	 
	meter_run_pk
	Primary key of meter run


	 
	meter_run_status
	Meter run status


	 
	meter_run_failure_message
	Failure message (if any)


	 
	meter_run_traceback
	Traceback (if any)


	 
	meter_run_added
	Date meter run added


	 
	meter_run_updated
	Date meter result added


	 
	modeling_period_group_pk
	Primary key of modeling period


	 
	derivative_pk
	Primary key of derivative


	 
	derivative_interpretation
	Type of derivative


	 
	derivative_unit
	Unit of measure of derivative


	 
	baseline_period_pk
	Primary key of baseline period


	 
	baseline_period_label
	Label of baseline period


	 
	baseline_period_start
	Start date of baseline period (if any)


	 
	baseline_period_end
	End date of baseline period


	 
	baseline_model_result_pk
	Primary key of baseline model result


	 
	baseline_model_result_status
	Status of baseline model result


	 
	baseline_model_result_traceback
	Traceback if failed


	 
	baseline_model_result_r2
	R squared


	 
	baseline_model_result_cvrmse
	Coefficient of variation of root mean squared error


	 
	baseline_model_result_n_rows
	Number of rows in input


	 
	baseline_model_result_rmse
	Root mean squared error


	 
	baseline_derivative_value
	Baseline derivative value


	 
	baseline_derivative_lower_bound
	95 percent confidence lower bound on baseline derivative value


	 
	baseline_derivative_upper_bound
	95 percent confidence upper bound on baseline derivative value


	 
	reporting_period_pk
	Primary key of reporting period


	 
	reporting_period_label
	Label of reporting period


	 
	reporting_period_start
	Start date of reporting period (if any)


	 
	reporting_period_end
	End date of reporting period


	 
	reporting_model_result_pk
	Primary key of reporting model result


	 
	reporting_model_result_status
	Status of reporting model result


	 
	reporting_model_result_traceback
	Traceback if failed


	 
	reporting_model_result_r2
	R squared


	 
	reporting_model_result_cvrmse
	Coefficient of variation of root mean squared error


	 
	reporting_model_result_n_rows
	Number of rows in input


	 
	reporting_model_result_rmse
	Root mean squared error


	 
	reporting_derivative_value
	Reporting derivative value


	 
	reporting_derivative_lower_bound
	95 percent confidence lower bound on reporting derivative value


	 
	reporting_derivative_upper_bound
	95 percent confidence upper bound on reporting derivative value


	 
	differential_value
	Savings value


	 
	differential_direction
	BASELINE_MINUS_REPORTING/REPORTING_MINUS_BASELINE


	 
	differential_lower_bound
	95 percent confidence lower bound on savings value


	 
	differential_upper_bound
	95 percent confidence upper bound on savings value


	warehouse_groupstatisticsmart
	 
	Summaries group statistics


	 
	id
	Primary key


	 
	group_name
	Name of group


	 
	group_pk
	Primary key of group


	 
	serialized_input_url
	Cloud storage location of serialized input


	 
	serialized_output_url
	Cloud storage location of serialized output


	 
	aggregation_run_pk
	Primary key of aggregation run


	 
	aggregation_run_status
	Status of aggregation run


	 
	aggregation_run_failure_message
	Failure message (if any)


	 
	aggregation_run_traceback
	Traceback (if any)


	 
	aggregation_run_added
	Date added


	 
	aggregation_run_updated
	Date updated


	 
	aggregation_result_pk
	Primary key of aggregation result


	 
	n_derivatives
	Number of derivatives in group


	 
	aggregation_result_added
	Date added


	 
	aggregation_result_updated
	Date updated


	 
	aggregation_result_eemeter_version
	eemeter library software version


	 
	aggregetion_result_datastore_version
	datastore application software version


	 
	trace_interpretation
	Type of trace included in aggreation


	 
	derivative_interpretation
	Type of derivative included in aggregation


	 
	statistic_interpretation
	Type of aggregation done


	 
	statistic_unit
	Unit of measure


	 
	baseline_value
	Aggregated baseline value


	 
	baseline_lower_bound
	95 percent confidence lower bound


	 
	baseline_upper_bound
	95 percent confidence upper bound


	 
	reporting_value
	Aggregated reporting value


	 
	reporting_lower_bound
	95 percent confidence lower bound


	 
	reporting_upper_bound
	95 percent confidence upper bound


	 
	differential_value
	Aggregated differential value


	 
	differential_direction
	BASELINE_MINUS_REPORTING/REPORTING_MINUS_BASELINE


	 
	differential_lower_bound
	95 percent confidence lower bound


	 
	differential_upper_bound
	95 percent confidence upper bound


	 
	n_derivatives_accepted
	Number of derivatives in group accepted


	 
	n_derivatives_accepted_baseline
	Number of derivatives in group with accepted baseline result


	 
	n_derivatives_accepted_reporting
	Number of derivatives in group with accepted reporting result


	 
	n_derivatives_rejected
	Number of derivatives in group rejected


	 
	n_derivatives_rejected_baseline
	Number of derivatives in group with rejected baseline result


	 
	n_derivatives_rejected_reporting
	Number of derivatives in group with rejected reporting result











          

      

      

    

  

    
      
          
            
  


Management commands

The following management commands are available for usage on the datastore.


dev_seed

Creates an admin user:



	username: demo

	password: demo-password

	access token: tokstr






Creates a sample project with the id DEV_SEED_PROJECT with the
following traces:



	DEV_SEED_TRACE_NATURAL_GAS_MONTHLY

	DEV_SEED_TRACE_NATURAL_GAS_DAILY

	DEV_SEED_TRACE_ELECTRICITY_15MIN

	DEV_SEED_TRACE_ELECTRICITY_HOURLY

	DEV_SEED_TRACE_SOLAR_HOURLY

	DEV_SEED_TRACE_SOLAR_30MIN






Example usage:

python manage.py dev_seed








prod_seed

Creates an admin user with generated password and access token:



	username: admin

	password: <generated password>

	access token: <generated token>






The generated password and access token will be shown in the output:

Admin password: <generated password>
Admin token: <generated token>





Example usage:

python manage.py prod_seed








trace_record_indexes

Creates and destroy indexes as part of loading TraceRecords.

Loading raw data is significantly faster if indexes and foreign key
constraints are dropped and rebuilt after importing.

This command inspects the current indexes and constraints, dropping all but the
primary key indexes.

If new indexes are added, they should be added here (not in model classes) so
that they are properly rebuilt during imports.

The results of this command can be inspected through psql:

=> \d datastore_tracerecord





With indexes, the description will look something like this:

Indexes:
    "datastore_tracerecord_pkey" PRIMARY KEY, btree (id)
    "datastore_tracerecord_ffe73c23" btree (trace_id)
Foreign-key constraints:
    "datast_trace_id_53e4466e_fk_datastore_trace_id"
    FOREIGN KEY (trace_id) REFERENCES datastore_trace(id)
    DEFERRABLE INITIALLY DEFERRED





Without indexes, it will look something like this:

Indexes:
    "datastore_tracerecord_pkey" PRIMARY KEY, btree (id)





Example usage:

To destroy trace_records (before ETL):

python manage.py trace_record_indexes destroy





To create trace_records (after ETL):

python manage.py trace_record_indexes create








run_meters

Triggers meter runs for specified projects or traces.

Example usage:

python manage.py run_meters --all-traces





Optional arguments:

--projects PROJECTS [PROJECTS ...]
                      Project ids to run
--traces TRACES [TRACES ...]
                      Trace ids to run
--all-projects        Run meters for all projects, overrides --projects
--all-traces          Run meters for all traces, overrides --traces
--use-project-id      Use project_id, not id, for any projects to run
--use-trace-id        Use trace_id, not id, for any traces to run
--purge-queue         Purges celery queue before adding meter runs
--detailed-output     Provides more detailed project and trace level output
                      re: meter ids
--delete-previous-meters
                      Delete old meter runs associated with these ids








meter_progress

Check progress of one or more meter runs.

Example usage:

python manage.py meter_progress --all-meters





Optional arguments:

--meters METERS [METERS ...]
                      Meter ids to check
--all-meters          Check progress for all meters
--poll-until-complete
                      Repeatedly check progress until all meters complete
--poll-interval POLL_INTERVAL
                      Seconds to wait between checks if --poll-until-
                      complete
--poll-max POLL_MAX   Max number of seconds to poll if --poll-until-complete
                      before exiting








delete_meters

Delete meter runs.

Example usage:

python manage.py delete_meters





Optional arguments:

--meters METERS [METERS ...]
                      Meter ids to delete
--traces TRACES [TRACES ...]
                      Trace ids to delete associated meters
--projects PROJECTS [PROJECTS ...]
                      Project ids to delete associated meters








run_aggregations

Run aggregations of meter results by group.

Example usage:

python manage.py run_aggregations --all-groups





Optional arguments:

--group-names GROUP_NAMES [GROUP_NAMES ...]
                      Groups against which to run aggregations
--all-groups          Run aggregations for all groups; overrides
                      --group_names








meterresultmart

Create and destroy the data warehouse mart for meter results.

The warehouse table is warehouse_meterresultmart

Example usage:

python manage.py meterresultmart create
python manage.py meterresultmart destroy








modelresultmart

Create and destroy the data warehouse mart for model results.

The warehouse table is warehouse_modelresultmart

Example usage:

python manage.py modelresultmart create
python manage.py modelresultmart destroy








projectsummarymart

Create and destroy a data mart for metering results organized by project for
a charting frontend.

The warehouse table is warehouse_projectsummarymart

Example usage:

python manage.py projectsummarymart create
python manage.py projectsummarymart destroy








tracesummarymart

Create and destroy a data mart that summarizes traces and their records.

The warehouse table is warehouse_tracesummarymart

Example usage:

python manage.py tracesummarymart create
python manage.py tracesummarymart destroy








geoinfo

Create and destroy two tables for geographical information

The warehouse tables are warehouse_zctainfo and warehouse_countyinfo

Example usage:

python manage.py geoinfo create
python manage.py geoinfo destroy











          

      

      

    

  

    
      
          
            
  


API





          

      

      

    

  

    
      
          
            
  


ETL Toolkit

The ETL toolkit is provided to assist moving data from its source into the
datastore.

“ETL” stands for Extract-Transform-Load. These three steps outline the
actions the ETL toolkit helps with and are as follows:


	Extract: obtain data from an external (non-datastore) source.

	Transform: convert that data into a form usable the datatore.

	Load: move the transformed data into the datastore.



The ETL library is not run directly. Rather, its components are used to build
ETL pipelines that are specific to a datastore instance.



	Installation







	API









          

      

      

    

  

    
      
          
            
  


Installation

To install the ETL library, run the following:

$ git clone https://github.com/openeemeter/etl
$ cd etl
$ pip install -r requirements.txt





For more information, see github [https://github.com/openeemeter/etl/].





          

      

      

    

  

    
      
          
            
  


API

...





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   e
   


   
     		 	

     		
       e	

     
       	[image: -]
       	
       eemeter	
       

     
       	
       	   
       eemeter.processors.dispatchers	
       

     
       	
       	   
       eemeter.processors.interventions	
       

     
       	
       	   
       eemeter.processors.location	
       

     
       	
       	   
       eemeter.structures	
       

     
       	
       	   
       eemeter.weather.location	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | P
 | S
 | T
 | U
 | Z
 


A


  	
      	add_year() (eemeter.weather.GSODWeatherSource method)

      
        	(eemeter.weather.ISDWeatherSource method)


      


      	add_year_range() (eemeter.weather.GSODWeatherSource method)

      
        	(eemeter.weather.ISDWeatherSource method)


      


  

  	
      	ArbitraryEndSerializer (class in eemeter.io.serializers)


      	ArbitrarySerializer (class in eemeter.io.serializers)


      	ArbitraryStartSerializer (class in eemeter.io.serializers)


  





B


  	
      	billing_to_monthly_avg() (eemeter.modeling.models.caltrack.CaltrackMonthlyModel method)


  

  	
      	BillingElasticNetCVModel (class in eemeter.modeling.models.billing)


  





C


  	
      	CaltrackMonthlyModel (class in eemeter.modeling.models.caltrack)


      	climate_zone_is_supported() (in module eemeter.weather.location)


      	climate_zone_to_tmy3_stations() (in module eemeter.weather.location)


      	climate_zone_to_usaf_stations() (in module eemeter.weather.location)


  

  	
      	climate_zone_to_zipcodes() (in module eemeter.weather.location)


      	create_demand_fixture() (eemeter.modeling.formatters.ModelDataBillingFormatter method)

      
        	(eemeter.modeling.formatters.ModelDataFormatter method)


      


      	create_input() (eemeter.modeling.formatters.ModelDataBillingFormatter method)

      
        	(eemeter.modeling.formatters.ModelDataFormatter method)


      


  





D


  	
      	daily_to_monthly_avg() (eemeter.modeling.models.caltrack.CaltrackMonthlyModel method)


  

  	
      	daily_trace_data() (eemeter.modeling.formatters.ModelDataBillingFormatter method)

      
        	(eemeter.modeling.formatters.ModelDataFormatter method)


      


  





E


  	
      	eemeter.processors.dispatchers (module)


      	eemeter.processors.interventions (module)


      	eemeter.processors.location (module)


      	eemeter.structures (module)


  

  	
      	eemeter.weather.location (module)


      	EnergyEfficiencyMeter (class in eemeter.ee.meter)


      	EnergyTrace (class in eemeter.structures)


      	EnergyTraceSet (class in eemeter.structures)


      	evaluate() (eemeter.ee.meter.EnergyEfficiencyMeter method)


  





G


  	
      	get_energy_modeling_dispatches() (in module eemeter.processors.dispatchers)


      	get_input_data_mask() (eemeter.modeling.formatters.ModelDataBillingFormatter method)

      
        	(eemeter.modeling.formatters.ModelDataFormatter method)


      


  

  	
      	get_modeling_period_set() (in module eemeter.processors.interventions)


      	get_weather_normal_source() (in module eemeter.processors.location)


      	get_weather_source() (in module eemeter.processors.location)


      	GSODWeatherSource (class in eemeter.weather)


  





H


  	
      	haversine() (in module eemeter.weather.location)


  





I


  	
      	indexed_temperatures() (eemeter.weather.GSODWeatherSource method)

      
        	(eemeter.weather.ISDWeatherSource method)


        	(eemeter.weather.TMY3WeatherSource method)


      


  

  	
      	Intervention (class in eemeter.structures)


      	ISDWeatherSource (class in eemeter.weather)


      	itertraces() (eemeter.structures.EnergyTraceSet method)


  





L


  	
      	lat_lng_to_climate_zone() (in module eemeter.weather.location)


      	lat_lng_to_tmy3_station() (in module eemeter.weather.location)


  

  	
      	lat_lng_to_usaf_station() (in module eemeter.weather.location)


      	lat_lng_to_zipcode() (in module eemeter.weather.location)


  





M


  	
      	ModelDataBillingFormatter (class in eemeter.modeling.formatters)


      	ModelDataFormatter (class in eemeter.modeling.formatters)


  

  	
      	ModelingPeriod (class in eemeter.structures)


      	ModelingPeriodSet (class in eemeter.structures)


  





P


  	
      	predict() (eemeter.modeling.models.caltrack.CaltrackMonthlyModel method)


  

  	
      	Project (class in eemeter.structures)


  





S


  	
      	SeasonalElasticNetCVModel (class in eemeter.modeling.models.seasonal)


  

  	
      	serialize_demand_fixture() (eemeter.modeling.formatters.ModelDataFormatter method)


      	serialize_input() (eemeter.modeling.formatters.ModelDataFormatter method)


  





T


  	
      	tmy3_station_is_supported() (in module eemeter.weather.location)


      	tmy3_station_to_climate_zone() (in module eemeter.weather.location)


  

  	
      	tmy3_station_to_lat_lng() (in module eemeter.weather.location)


      	tmy3_station_to_zipcodes() (in module eemeter.weather.location)


      	TMY3WeatherSource (class in eemeter.weather)


  





U


  	
      	usaf_station_is_supported() (in module eemeter.weather.location)


      	usaf_station_to_climate_zone() (in module eemeter.weather.location)


  

  	
      	usaf_station_to_lat_lng() (in module eemeter.weather.location)


      	usaf_station_to_zipcodes() (in module eemeter.weather.location)


  





Z


  	
      	zipcode_is_supported() (in module eemeter.weather.location)


      	zipcode_to_climate_zone() (in module eemeter.weather.location)


      	zipcode_to_lat_lng() (in module eemeter.weather.location)


  

  	
      	zipcode_to_tmy3_station() (in module eemeter.weather.location)


      	zipcode_to_usaf_station() (in module eemeter.weather.location)


      	ZIPCodeSite (class in eemeter.structures)


  







          

      

      

    

  _images/project-timeline-illustration.png
Baseline period | Intervention(s) | Reporting period(s)






nav.xhtml

    
      Table of Contents


      
        		The Open Energy Efficiency Meter


        		Guides
          
          		Introduction
            
            		Core use cases


            		Other potential use cases


            		Data requirements


            		Loading data


            		External analysis


            


          


          		Background
            
            		1) Meters and Smart Meters - where does energy data come from?


            		2) Measuring Energy Savings and the Transition to Demand Side Management


            		3) How the OpenEEmeter is valuable: Baselining, Normalization, and Modeling Energy Use


            


          


          		Architecture Overview


          		Methods Overview
            
            		Modeling periods


            		Trace modeling


            		Weather normalization


            		Savings


            		Aggregation rules


            		Error propagation


            		Weather data matching


            


          


          		Modeling Overview
            
            		Basic modeling principles


            		Types of models


            


          


          		Glossary


          		Why open source?


          


        


        		eemeter
          
          		Installation


          		Topics
            
            		Basic Usage: eemeter package


            		Running a meter


            		Data preparation


            		Inspecting results


            		Weather Data Caching


            


          


          		API
            
            		eemeter.ee


            		eemeter.io


            		eemeter.modeling


            		eemeter.processors


            		eemeter.structures


            		eemeter.weather


            


          


          		Development
            
            		Testing


            		Building Documentation


            


          


          


        


        		datastore
          
          		Development Setup
            
            		Clone the repo and change directories


            		Install required python packages


            		Define the necessary environment variables


            		Run database migrations


            		Seed the database


            		Start a development server


            


          


          		Topics
            
            		Basic Usage: datastore application


            		Setup


            		Using the API to get loaded data


            		Running meters


            		Scheduling a single meter run


            		Customizing meter runs


            		Bulk-triggering meter runs


            		Meter result warehouse tables


            		Aggregations and groups


            		Group statistics warehouse tables


            		PostgreSQL tables


            		Management commands


            


          


          		API


          


        


        		ETL Toolkit
          
          		Installation


          		API


          


        


      


    
  

_static/up.png





_static/down.png





_static/comment-close.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/plus.png





_static/comment.png





_static/minus.png





_static/up-pressed.png





_static/file.png





_images/trace-segmenting-illustration.png
Trace 1

Trace 2

Trace 1

Trace 2

Baseline period | Intervention(s)

Reporting period(s)

_—






_static/comment-bright.png





